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Pathogens can spread epidemically through populations. Beneficial contagions, such as viruses
that enhance host survival or technological innovations that improve quality of life, also have
the potential to spread epidemically. How do the dynamics of beneficial biological and so-
cial epidemics differ from those of detrimental epidemics? We investigate this question using
three theoretical approaches. First, in the context of population genetics, we show that a
horizontally-transmissible element that increases fitness, such as viral DNA, spreads super-
exponentially through a population, more quickly than a beneficial mutation. Second, in
the context of behavioral epidemiology, we show that infections that cause increased connec-
tivity lead to superexponential fixation in the population. Third, in the context of dynamic
social networks, we find that preferences for increased global infection accelerate spread and
produce superexponential fixation, but preferences for local assortativity halt epidemics by
disconnecting the infected from the susceptible. We conclude that the dynamics of beneficial
biological and social epidemics are characterized by the rapid spread of beneficial elements,
which is facilitated in biological systems by horizontal transmission and in social systems by
active spreading behavior of infected individuals.

Epidemiology has traditionally focused on the spread of harmful contagions, including hu-
man viruses such as influenza or dengue fever1–3, chytrid fungus in frogs4, and bacterial wilt in
beans5. The serious consequences of detrimental epidemics drive their study, but beneficial ele-
ments could also spread contagiously, and comparatively little is known about their dynamics6.
The social sciences havestudied the spread of beneficial behaviors, such as good health practices7

or adoption of agricultural technology8, but such efforts have stopped short of a unified mathemat-
ical framework that captures the wide range of observed phenomena and connects them with these
epidemiological processes.

Beneficial epidemics involving the spread of viruses, plasmids, genes, and microbes, have
been identified in biology, but their dynamics are poorly characterized. Beneficial viruses, which
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(Model 1) (Model 2) (Model 3)
HH

V
V

Mode of Benefit fitness implicit via connectivity explicit utility
Population well-mixed social social
Transmission vertical and horizontal horizontal horizontal
Network
rewiring

none fixed targeting dynamic strategy

Table 1: Comparison of bene models. In the three schematics, the black arrow represents one
increment of time, the black circles are infected individuals, the red circles are newly infected
individuals, and the open circles are susceptible individuals. In Model 1, H represents infection
from horizontal transmission and V from vertical transmission. In Model 2, dashed red lines
indicated new social connections and solid black lines indicated existing connections. The same
holds for Model 3, with the addition of strategic rewiring, which includes both adding new links
and severing certain existing ones.

occur in both unicellular and multicellular organisms9, can enhance survival10 or even be essential
to the survival of the host11. Many beneficial genetic elements have been identified that spread
horizontally among unicellular organisms12–18, but their large-scale dynamics are not well under-
stood. Thus, while the dynamics of biological beneficial epidemics have been investigated in a
small number of specific, unstructured populations12, 19, 20, many open questions remain6, 12, 15.

In the behavioral sciences, social epidemics of behaviors, ideas, and technologies have long
been studied (e.g. Ref. 21, first published in 1962). Examples include the adoption among humans
of new agricultural technologies8, linguistic variants22, and social movements23, 24, and extend to
the acquisition of new feeding techniques among blue tits25 and humpback whales26. In particular,
studies have considered the influence of static network topology on spreading dynamics8, 23, 24, 27–30,
but the simultaneous dynamics of networks and spreading remain largely unexplored.

Studying the dynamics of beneficial epidemics requires a clear definition of benefit. Here,
by beneficial, we always mean beneficial to individual hosts, yet each model requires a specific
definition of benefit relevant to that model. For example, in evolutionary contexts, benefits may
be defined as conferring reproductive fitness, while in social contexts, benefits may be defined
as increasing social influence or personal utility. By using a natural definition of benefit in each
model, we are able to study the factors that unify dynamics of beneficial epidemics in a range
of contexts. In contrast, one example of a genetic element that is horizontally transmitted but is
not a beneficial epidemic is a lytic phage that induces infected cells to rupture. Because these
phages harm the host there is the potential for a co-evolutionary arms race – a dynamic not seen in
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beneficial epidemics.

We investigate epidemics of beneficial elements, which we call benes, in three contexts (Ta-
ble 1). In the context of population genetics, the relevant concept of benefit is simply reproduction.
Therefore, we examine a bene that improves fitness and is transmitted both vertically and hori-
zontally. In the context of behavioral epidemiology, a relevant benefit must be manifested within
the same generation and affect social behavior. We thus analyze a bene that causes the formation
of new network links that preferentially target uninfected nodes. In the context of dynamic social
networks with individual agent preferences, the concept of benefit must incorporate the opinions
of individuals about what is beneficial to them. In this context, we investigate a family of benes
that incite individuals to form new social ties and break existing ones, causing a wide variety of
transient and steady-state behaviors. Across these contexts, we find that the spreading dynamics
of benes is qualitatively different than in traditional epidemics.

Model 1: Epidemics with fitness benefits

In biological systems, beneficial mutations increase the reproductive fitness of an organism, in-
creasing the number of offspring the host leaves in subsequent generations. Here we consider a
beneficial sequence of genetic material that also spreads horizontally through the population, and
contrast its spread with that of a beneficial element that is only transmitted vertically.

We consider two types of individuals: those infected by the bene, I , and those uninfected
by the bene and therefore susceptible, S. The bene is assumed to increase the reproductive rate
of infected individuals. On its own, a growth rate advantage would cause the infected population
to eventually outnumber the susceptible population, but in this model, the bene can also spread
horizontally between individuals, and so S entities are also converted into I entities within the same
generation (see Supplemental Text for consideration of a fixed population model). We assume that
the bene is transmitted across generations with probability p. The growth and infection processes
are captured by the time evolution of the S and I population sizes:

Ṡ = S − βSI+(1 + s)(1− p)I, İ = (1 + s)pI + βSI , (1)

where β is the infection rate. This basic model is similar to S-I models and work done previously
(e.g. Ref. 31).

In the absence of horizontal transmission (β = 0) and assuming vertical transmission is per-
fect (p = 1), (1) can be solved analytically: S(t) = S(0)et and I(t) = I(0)e(1+s)t. The proportion
of the population infected at time t is therefore 1/(1 + Z0e

−st), where Z0 = S(0)/I(0), and as
expected, the fraction of uninfected individuals shrinks exponentially. However, with horizontal
transmission, β > 0, the population is taken over by infected individuals much faster than without
horizontal transmission. Consider a slight variant of (1), where susceptible individuals that become
infected through horizontal transfer are removed from the susceptible population, but do not add
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to the infected population. Under this assumption, the number of infected individuals is the same
as without horizontal transfer and the number of susceptible individuals becomes

S(t) = S(0)et−
β

1+s
e(1+s)t+ β

1+s . (2)

The proportion of the population still uninfected at time t is therefore

Z(t) =
[
1 + Z−10 e

β
1+s

(e(1+s)t−1)est
]−1

, (3)

exhibiting a superexponential decay, and this is an upper bound on Z(t) for the full model (Eq. (1)).

If vertical transmission is imperfect (p < 1) then the infected I population continually gener-
ates susceptible individuals. The S population approaches a steady state of S∗ = (1− p)(1 + s)/β
as t → ∞. If we assume that the infected population is initially small, then the system has three
dynamical regimes (see Supplemental Figure S1 for example). First, when βSI � S, I , the popu-
lation is so dilute that horizontal transmission events are rare, and both populations grow exponen-
tially such that S ∝ et and I ∝ e(1+s)pt. As βSI increases there is a sharp transition phase where
susceptible individuals are rapidly infected. This leads to the final phase where the S population
approaches the steady state and the I population grows exponentially at a rate I ∝ e(1+s)t that is
independent of the vertical transmission probability. Of the three dynamical regimes, the transi-
tion phase is the only one with potential for super exponential dynamics since the I population is
moving from one exponential growth rate to another, larger one.

Model 2: Epidemics with connectivity benefits

In the previous section, we considered benes whose beneficial effect occurs across generations in
a well-mixed population, but in a heterogeneous population, the spread of a bene can be affected
in the same generation by a change in the social behavior of infected individuals. Many modes
of benefit manifest indirectly in an increased social connectivity of infected individuals: increased
energy allowing more social connections, increased social desirability attracting new contacts, or
conscious desire to spread the bene. Initially, we do not explicitly model the underlying benefit,
but only consider its indirect effect on the network of social contacts in a population. We obtain
a preliminary view of the spreading dynamics we expect for such benes. A more explicit consid-
eration of how a contagion’s benefit might induce a change in social behavior is the basis of the
model analyzed in the next section.

Harmful contagions can also induce behavioral effects that increase its spread, and the in-
terplay between an infectious disease and changes in the underlying network structure has been
studied at great length32–39. However, because the contagion is detrimental to the host, there is usu-
ally a tension between behavior of infected individuals, affected by the contagion to try to increase
its spread, and that of the uninfected population, attempting to limit it. The spread of a purely
beneficial contagion would not involve this tension and we expect different spreading dynamics.

4



We consider an “SIS” model where nodes can be either infected or susceptible, and may
transition from either state to the other. Susceptible nodes are infected at a transmission rate β by
each of their infected neighbors and infected nodes recover at rate r to become susceptible. We
suppose that the consequence of the bene is to generate ∆ new links upon infection and remove the
same amount upon recovery. We also suppose the targets of new links to be chosen either randomly
from all nodes in the network or preferentially chosen from susceptible nodes (disassortative).
This preference is modeled with the parameter α that denotes the assortative bias. When α = 0,
susceptible nodes are always selected as the target for new links by infected nodes. When α = 1,
there is no bias, and targets are chosen uniformly from the population. In between, susceptible
nodes are preferentially targeted, but links of both types can be created.

Let S and I denote the fraction of nodes currently susceptible and infected, respectively, such
that S + I = 1. Let [SI] be the number of edges between S and I nodes normalized by the total
population size, and so on for [SS] and [II]. Following the methods of Refs.32, 33 for networks with
Poissonian degree distribution of mean k0, we can write the differential equations governing this
process as follows.

İ = −Ṡ = β[SI]− rI
˙[SS] = −2β ([SS][SI]/S) + r[SI]

kI −∆

kI
˙[SI] = 2β ([SS][SI]/S)− β([SI]2/S)− β[SI]− r[SI]+ (4)

β[SI]∆
S

S + Iα
+ 2 r [II]

kI −∆

kI

˙[II] = β([SI]2/S) + β[SI] + β [SI] ∆
Iα

S + Iα
− 2r[II],

The average degree of an infected node is kI = (2[II] + [SI])/I . The critical transmission
rate for the bene to spread epidemically is then βc = r/

(
τ +
√
k0 + τ 2

)
, where τ = 1

2
(k0+∆−1).

When β < βc, any small infection dies out and the only stable state is when the entire population
is susceptible (S = 1). When β > βc the S = 1 equilibrium becomes unstable and an arbitrarily
small infected population will grow to an extensive size.

In a static Poissonian network, the epidemic threshold βc is simply r/k0. Notice that while
we recover this result in the limit ∆→ 0, our critical transmission rate is not simply that of a Pois-
sonian network with average degree k0 + ∆. On the one hand, the degree distribution of infected
node is of smaller variance than a Poisson distribution, which raises the epidemic threshold. On
the other hand, there is a feedback between the expected epidemic size and the average degree of
the network which lowers the epidemic threshold. Our steady state analysis is illustrated in Figure
S3 as a function of model parameters.

We saw in the biological model that the steady state proportion of uninfected individuals
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Table 2: Dynamics of benes with connectivity benefits

instantaneous ∆ continuous ∆
α = 0 α > 0 α = 0 α > 0

epidemic threshold βc
r

= 1

τ+
√
k0+τ2

—

τ = 1
2
(k0 + ∆− 1)

early time exp. growth; const. rate exp. growth; variable rate
fixation e−e

t
e−e

−t
(t∗ − t)2 e−t

can decrease toward zero superexponentially due to a combination of a fitness disadvantage and
horizontal transmission. Using the present model, we find that such a superexponential decrease
can also occur due to a combination of horizontal transmission and targeted link generation.

If new links are perfectly targeted at susceptible individuals (α = 0), then as long as more
than one link on average is generated per infection (∆ ≥ 1), the susceptible population shrinks
double-exponentially, that is, dS(t)/dt = −x(t)S(t), where dx(t)/dt = β(∆ − 1)x(t). On the
other hand, if ∆ < 1, then even if new links are perfectly targeted, the rate at which S decreases
itself decreases exponentially.

Suppose that infected individuals imperfectly target susceptible individuals. Then, as I be-
comes much larger than S, even a small α > 0 causes most new links to be made toward already
infected individuals. Effectively, this is equivalent to ∆ → 0. The rate at which S decreases
will decrease exponentially, as in a standard epidemic process. We expect two phases in the fi-
nal spreading dynamics: at first, when α � S, the behavior will be as if α = 0, with double-
exponential decay of the susceptible population size (assuming ∆ > 1). However, eventually S
becomes smaller than α, and the system acts as if no extra SI links are generated.

In the Supplementary Information, we analyze a similar model where the extra connectivity
accrues throughout the time an individual is infected. We then find that the infection always reaches
fixation in finite time. Analytic results are summarized in Table 2 and illustrated in Figure 1.

The behaviors observed in our epidemiological models differ dramatically from classic spread-
ing dynamics. In short, while the addition of the connectivity benefit has a straightforward impact
on the epidemic threshold and the early time spread, the fixation dynamics are sensitive to both
how these new links are created and to whom. Fixation dynamics refer to the spread of the epi-
demic in the endemic regime, where we would expect detection of benes to be most likely. Our
predictions for possible behaviors in this regime provide us with potential signals for the detection
of benes in empirical data. Moreover, the sensitivity of these predictions to individual preference
(i.e., α) suggests the need for frameworks to incorporate the costs and benefits of social targeting.
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Figure 1: Perfect targeting (α = 0) initial and final dynamic regime. (A) The fixation dynamics
are shown for both the instantaneous and continuous link generation models. In the continuous
model the convergence to complete fixation is in finite time. For the instantaneous model, complete
fixation is approached faster than exponentially (when ∆ > 1, dotted straight line for comparison)
or is not approached even for very long times (when ∆ < 1). (B) The initial dynamics is given for
the same cases. In all these plots the recovery rate is r = 0 and the transmission rate β = 1/2, the
initial degree k0 = 3.
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Model 3: Epidemics with utility benefits

The previous section considered how a bene spreads when its implicit benefit manifests in in-
creased connections. Here, we consider the case when a bene has explicit consequences for an
individual’s utility. We call an infectious trait a bene if becoming infected leads to an increase in
utility. We consider how the utility conferred by the infection leads individuals to rewire strategi-
cally so as to influence infection dynamics and thereby increase their future expected utility. For
example, if infected individuals can increase utility by growing the size of the infected population,
they can ‘proselytize’ and spread the trait by seeking out new social connections to the suscepti-
bles; on the other hand, if the infected gain utility from only being connected to other infected, the
opposite rewiring dynamic can take hold.

We consider an epidemiological model in which both infected and susceptible individuals
rewire their connections based on a utility function. The utility function reflects preferences for
local conformity versus global spreading of the infection. Infected and susceptible individuals’
utility functions are indicated by UI(In, Sn, Ig) and US(In, Sn, Ig) respectively, where In is the
number of infected neighbors, Sn is the number of susceptible neighbors, and Ig is the total number
of infected individuals in the global population.

Importantly, individuals rewire based on their predictions of how their future expected utility
will change due to epidemic spreading dynamics. In making predictions, individuals only make use
of knowledge of their direct connections (and not, for example, connections between their neigh-
bors). We use PI and PS for the predicted expected utility of infected and susceptible individuals.
As before, transmission is assumed to be a simple contact process with rate β.

We show that different preferences for local and global infections lead to different dynamical
regimes. Here we assume that the utility functions are linear: UI(In, Sn, Ig) = aIIn + bISn + cIIg
and US(In, Sn, Ig) = aSIn + bSSn + cSIg, where aI and aS are parameters specifying the utility
of one additional infected neighbor, bI and bS specify the utility of one additional susceptible
neighbor, and cI and cS specify the utility of increasing the number of infected individuals in the
global population by one. We also define dI = aI − bI and dS = aS − bS , the utilities of swapping
a susceptible neighbor for an infected one.

Infected individuals’ predictions account for the probability that they will infect some num-
ber X = 1, . . . , Sn of their susceptible neighbors. Assuming a well-mixed population, X is dis-
tributed as a binomial, X ∼ B(Sn, β), giving

PI(In, Sn, Ig) = EX [UI(In +X,Sn −X, Ig +X)]

= UI(In, Sn, Ig) + (dI + cI)βSn.

Susceptible individuals account for the probability that they become infected by at least one of
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their infected neighbors

PS(In, Sn, Ig) = (1− (1− β)In)UI(In, Sn, Ig + 1) + (1− β)InUS(In, Sn, Ig)

≈ βIn (UI (In, Sn, Ig) + cI) + (1− βIn)US (In, Sn, Ig) ,

where we use (1− β)In ≈ 1− βIn assuming βIn � 1.

The parameters aI , . . . , cS determine individuals’ rewiring behavior. For an infected individ-
ual, the change in predicted utility from disassortative rewiring is

PI(In − 1, Sn + 1, Ig)− PI(In, Sn, Ig) = −dI + (dI + cI) β

Assortative rewiring is chosen when:

dI ≥ (dI + cI) β (5)

while disassortative rewiring is chosen otherwise. For infected individuals, the predicted utility of
each rewiring strategy does not depend on the state of the population: either the assortative or the
disassortative regime will hold for all infected individuals at all times.

For a susceptible individual, the change in predicted utility from disassortative rewiring is

dS + β [(aI − aS)(In − Sn) + 2(bI − bS)Sn + (cI − cS)Ig + cI ]

with the negative for assortative rewiring. Thus, for susceptible individuals, the predicted utility
of each rewiring strategy depends on the state of the population, and not just the parameters. The
assortative rewiring will be chosen when

(aI − aS + dI − dS)In + (bI − bS)Sn + (cI − cS)Ig < −dS
β
− cI + (dI − dS) (6)

and disassortative otherwise.

This framework tells us how individual preferences translate into assortative or disassortative
rewiring behavior for infected and susceptible individuals in the course of an epidemic. This al-
lows us to formulate dynamics similar to those presented in the earlier sections (see Supplemental
Text C for the general derivation), but now derived from the preferences and predictions of indi-
viduals. By combining epidemiological modeling with strategic rewiring, our framework could be
used to analyze social movements, the spread of technologies, and strategic rewiring dynamics in
detrimental infections (e.g., in which individuals rewire to avoid infection40, 41).

We now consider three illustrative cases, corresponding to three different sets of parameter
values. In the evangelizers case, the utility of infected individuals increases when the infection
spreads globally, corresponding to cI = 1 (non-specified parameters are 0). In this case, infection
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causes an increase in utility and is thus a bene. Based on (5) and (6), infected as well as suscep-
tible individuals rewire disassortatively, tempted by the possibility of increasing global spread. In
the cool kids case, all individuals prefer increasing the number of infected neighbors (the “cool”
kids) and decreasing the number of susceptible neighbors (the “uncool” kids), corresponding to
aI = aS = 1 and bI = bS = −1. In this case, infection confers no direct net utility change.
Yet, infected individuals rewire assortatively, while susceptibles rewire disassortatively. Finally,
in the snobs case, infected individuals prefer to be connected to other infected individuals, while
susceptibles are indifferent, corresponding to aI = 1, bI = −1. In this case, whether or not
infection causes an increase in utility depends on an individual’s neighborhood. As a result, sus-
ceptibles exhibit a complicated behavior: they switch from assortative to disassortative behavior at
a particular cutoff number of infected neighbors In > Sn+2

3
. As long as susceptible neighbors are

numerous, susceptible individuals are assortative to avoid the risk of an infection, which would put
them at odds with their neighborhood. Once infected neighbors become sufficiently numerous, the
susceptible become disassortative to have the chance to become infected and conform.

These three cases are motivated by previously studied social processes. The evangelizers
case can be seen as a model of explicit recruitment in a social movement 24, 42. The cool kids
case reflects the transmission of an idea through a group, where infected individuals’ assortativity
results in the formation of cliques (e.g., the anticonformity copying modeled in43). The snobs case
is related to models of segregation44, 45 where potentially asymmetric and conflicting preferences
for assortativity exist.

We simulate the dynamics of this model with ODEs (Supplemental Text C) similar to the
ones in the previous sections. In addition to contact spreading dynamics, assortative and disas-
sortative rewiring is performed according to the rules described above. We assume a well-mixed
compartmental model with N individuals and E edges, in which we track the proportion of in-
fected individuals I , and the proportion of [II], [SI], and [SS] links. Neighborhoods (i.e. values
of In and Sn) are assumed to be drawn with replacement from these compartments.

Figure 2 shows the dynamics for each case. The evangelizers case exhibits the same super-
exponential fixation dynamics as in the epidemic model with connectivity benefits (see Supple-
mental Text C). The disassortative behavior of both infected and susceptible individuals speeds
up the epidemic and drives the fixation dynamics. In the cool kids case, the epidemic is incom-
plete. The susceptible rush to rewire to the infected, as shown by initially high rates of ‘S→S to
S→I’ rewiring, while the infected break ties with the susceptible, as seen by the increase in the
rate of ‘I→S to I→I’ rewiring once the number of infected individuals rises. These two behaviors
compete, but once the infected are sufficiently numerous the latter dominates and the doors to the
infected community close. In the resulting network, all connections are between infected individ-
uals ([II] = 1), susceptibles are isolated, and the epidemic halts. In the snobs case, the epidemic
reaches even fewer individuals than in the previous case. While the infected rewire assortatively,
the susceptible have a mix of strategies. The result is that the network divides into two completely
disconnected components ([SI] = 0 and [II] + [SS] = 1), preventing the epidemic from reaching
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Figure 2: Dynamical regimes in the social epidemiological model. The dynamical regimes
arising for the three different cases. The first row shows the number of infected individuals over
time. The second row shows proportion of [II], [SI] and [SS] over time. The third row shows
the rate of different rewirings, where for example, ‘I → I to I→S’ indicates the rewiring by an
infected individual from an infected to a susceptible. Here N = 1000, E = 4000, Iinit = .05, and
β = 5× 10−4.
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Figure 3: Effect of transmission probabilities on epidemic spread and rewiring dynamics. Results
of strategic rewiring epidemics with varying transmission rates β. The top row shows the propor-
tion of infected for the three cases discussed in the text. The bottom row shows the cumulative
rewiring performed (per edge). The value of β used for Figure 2 is shown as a vertical dashed line.

the whole population. We also implemented this model using an explicit agent-based simulation,
which included effects of stochasticity, local network heterogeneity, and correlations of connectiv-
ity properties across the network. The results were qualitatively similar to the ODE model results
reported here (Supplemental Text C and Figure S4).

The characteristics of these regimes vary with β. Figure 3 shows the final reach of the epi-
demic and the cumulative rewiring for different values of β. For the evangelizers case, the epidemic
always spreads to the entire population. For the cool kids case, the reach of the epidemic increases
gradually with β, since faster spreading increases how many individuals get infected before the
susceptible become disconnected. For the snobs case, larger β increases the reach of the epidemic,
with a rapid transition from minimal spread to full spread once β passes a critical threshold. In
all these cases, the total amount of rewiring decreases when β is sufficiently large, since rewiring
stops once the epidemic has swept through the population. Interestingly, the amount of rewirings
for the snobs case also decreases with lower β, peaking around the critical threshold. This occurs
because when transmission is slow, equilibrium is reached very quickly: assortative rewiring by the
infected and the susceptible quickly disconnects these two groups before the infection can spread.

This model shows that strategic rewiring affects epidemic dynamics in multiple ways. When
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infected individuals benefit from increasing the global number of infections, it leads to an accel-
erating uptake and a much faster global spread than an epidemic without strategic rewiring. If
instead the infected individuals tend to assort, the epidemic can be stalled as infected individuals
entirely disconnect from susceptible ones.

Discussion

In this paper, we study the epidemics of beneficial contagions, benes. We find that they can spread
much more rapidly than pathogens that are traditionally studied. We investigate benes in several
distinct systems, both biological and social. While the dynamics by which benes spread depend on
the particular benefit conferred, we find commonalities across these systems. One striking outcome
is that all scenarios exhibit superexponential fixation in particular regimes.

A prime example of superexponential behavior is found in our evolutionary model. Here,
the bene confers a fitness advantage to infected individuals, and, in contrast to a standard positive
mutation, the bene can also be transmitted across individuals within a generation. One example of
such a bene would be antibiotic-resistance cassettes46, where bacteria acquire genes from neigh-
boring cells that increase survival when exposed to antibiotics. Our model shows that horizontal
transfer of such elements, even when vertical transmission is imperfect, dramatically reduces the
time required to fully infect the population.

The importance of horizontal transfer in evolutionary processes led us to consider a bene
which increases interactions between individuals in a network. An example is new technologies
with network effects, like the file-sharing service Dropbox, that incentivize users to actively recruit
new members. We use an “SIS” epidemiological model to analyze the effects of these added
network links. We find that added connections change the epidemic threshold, allowing benes
to break out despite lower transmissibility. We also find a much lower fixation time within the
population. In fact, if new edges are added only with susceptible individuals, the bene sweeps the
entire population in finite time. This result demonstrates that individual behavior is important in
determining whether a beneficial epidemic occurs.

In the model of epidemics with utility benefits, individuals’ behavior is based on preferences
for the distribution of the infection in the local neighborhood and global population. They strate-
gically rewire based on predictions about how their actions will increase utility. One example is
the phenomenon called NIMBY47, where individuals have a preference for global adoption of a
technology but do not want it in their immediate neighborhood, e.g. wind turbines. As we show
in three illustrative cases, variation in the strength of these preferences leads to different dynam-
ical regimes. In one regime, displayed by the evangelizer case, infected individuals rewire to
susceptible ones, facilitating the bene’s spread. Social movements instilling the desire to convert
anybody, and not just acquaintances, will spread quickly. In contrast, when individuals prefer to
conform with their neighbors, as in the cool kids and snobs cases, assortative rewiring results in a

13



disconnected network and a stalled epidemic. Thus, the outcome of an epidemic may reveal the
mechanisms underlying its generating dynamics.

In this paper we considered the dynamics of beneficial epidemics for certain biological and
social systems. We investigated contagions that confer specific types of benefits related to fitness
or social utility, but many other types of beneficial epidemics are possible. For example, one could
combine elements of our three models so that changes in social networks have cross-generational
effects. Alternatively, one could consider a contagion that is beneficial to one type of host but
harmful to others. These more complex models may exhibit other interesting behaviors that differ
from the more traditionally and extensively studied harmful epidemics. By differentiating between
the dynamics of various types of epidemics, it may be possible to identify distinct signatures of
epidemics and determine the type of contagion as it is spreading in real time. This line of research
could ultimately improve our ability to prevent the spread of harmful epidemics and harness the
power of beneficial epidemic dynamics to facilitate social change.

Acknowledgments. The authors acknowledge the insightful comments of two anonymous
referees whose feedback greatly improved the work. We are grateful for generous financial support
from the Miller Omega Program, and from the Santa Fe Institute, whom we thank for encourage-
ment in developing and conducting the 72 Hours of Science experiment. We acknowledge M.
Lachmann, V. Marceau, and J. Miller for helpful discussions. We especially thank M. Alexander,
D. Bacon, B. Bertram, R. Butler-Villa, J. Dunne, J. Elliott, J. German, M. Girvan, M. Hamilton,
D. Krakauer, J. Lovato, N. Metheny, J. Miller, S. Redner, D. Reed, K. Serna, C. Shedivy, and H.
Skolnik.

References
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Supplementary Information

A Evolutionary model

Imperfect transmission numerical solution We solve the system of equations with imperfect
transmission using parameters β = .05, s = .01, and p = .75. Thus, there is a small fitness
benefit to the bene and it fails to transmits vertically with a probability of .25. Starting with an
initial concentration of .01 for susceptible (red) and .0001 for infected (dashed), we see that there
are distinct dynamical regimes (Figure S1). First both population grow exponentially, then a rapid
decline in the susceptible population, followed by steady growth for the infected and no growth
for the susceptible population. The bottom panel shows the growth coefficient, i.e. the slope in
log space for both populations. Only in middle regime is there the potential for super exponential
dynamics.

Fixed population size In the main paper, we considered a bene in an expanding population. Here,
consider the same effect in a model with a finite population of size N . We use a previously
published model of horizontal gene transfer48 which is easily generalized to other mechanisms of
horizontal transmission of genetic elements found in multicellular organisms such as crustaceans
and insects49. This model ((7)) distinguishes the effects of the transmission rate β of the bene and
the selective value s of the bene. The number of I entities is n and the number of S entities is
N − n. The model is based on a Moran process50 in which a birth/death process occurs in discrete
time steps. The probability of having n infected types at time t, pn(t), depends on the cumulative
effects of the birth (λn) and death (µn) rates (see (7)). The birth rate (λn) includes actual births (the
first term, which involves s) as well as horizontal gene transfer (the second term, which involves
β). There are two stationary states of this model: either i) the entire population is un-infected (S),
or ii) the entire population is infected (I). We solve for the stationary distribution of pn(t) starting
with pn(0) = δn,1 (i.e all realizations start with a single infected individual (n = 1)).

dpn
dt

= µn+1pn+1 − (λn + µn)pn + λn−1pn−1

λn = (1 + s)n
N − n
N + 1

+ β
n(N − n)

N

µn = (N − n)
n

N + 1

(7)

Figure S2 shows the fixation probability and time to stationarity as a function of β for two
example values of s. As β increases, the probability that the bene fixes increases (left panel).
Higher transmission rates also lead to faster time to a stationary solution when compared to those
achieved by selection alone (right panel). The decrease in time to reach a stationary solution is
more dramatic when selection (s = 0.1) is lower. Thus for more modest fitness values of the bene
the role of horizontal gene transfer is greater.
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Figure S1: Sample dynamics of model 1 with imperfect transmission. Numerical solution of
Eq. 1 with parameters β = .05, s = .01, and p = .75.
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Figure S2: Probability of fixation in the evolutionary model. The probability that a novel bene
fixes (completely saturates the population) as a function of the infection rate, β, when s = 1 and
s = 0.1 (left panel). The time to reach a stationary state (where the bene either fixes or goes
extinct) as a function of β, when s = 1 and s = 0.1 (right panel). Time is plotted relative to the
time it takes a match model where β = 0. N = 100 in all cases.
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B Epidemics with connectivity benefit

Dynamical equations In the dynamical system describing the spread of a bene with connectivity
benefits, we use S and I to denote the fraction of nodes susceptible and infected, respectively, at a
given time. We use [SI] to denote the number of edges between S and I nodes normalized by the
total population size, and so on for [SS] and [II]. We also define such variables for triplets, such
that, for example, [ISI] is the number of node triplets, such that one of which is susceptible and
has edges connecting it to the other two, which are infected.

In the limit of a large population, the change in S, I , [SS], [SI], and [II] over time is given
by ordinary differential equations

İ = −Ṡ = β[SI]− rI
˙[SS] = −β [SSI] + r[SI]

kI −∆

kI
˙[SI] = β[SSI]− 2β[ISI]− β[SI]− r[SI]+ (8)

β[SI]∆
S

S + Iα
+ 2 r [II]

kI −∆

kI

˙[II] = 2β[ISI] + β[SI] + β [SI] ∆
Iα

S + Iα
− 2r[II],

where kI = (2[II] + [SI])/I is the average degree of an infected node.

Moment closure To solve the dynamical equations (8), we need to determine the triplet densities
[ISI] and [SSI]. We could write down differential equations for their evolution, but those would
involve still new terms specifying the density of four-node motifs. Therefore, we use a moment-
closure approximation to express these triplets in terms of the previously defined pairs. We do this
by assuming that if a node of type X has k incident edges, each of those edges is independently
taken to be an [XY ] node with probability proportional to [XY ] if Y 6= X and 2[XX] if Y = X .
Therefore, the concentrations of triplets that feature in the differential equations are given by

[ISI] = γS
[SI]2

2S

[SSI] = γS
2[SS][SI]

S

γS =
〈k2〉S − 〈k〉S
〈k〉2S

(9)

The factor γS compensates for the excess degree of an S node, taking into account the fact that
the expected number of additional edges a node has conditioned on having at least one edge is
not necessarily the same as the unconditional excepted number of edges. For a Poisson degree
distribution, they are the same, and that factor is 1. Because, in our graph, edges are continually
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being created and destroyed, γS would also be changing over time, not only because the average
degree 〈k〉S would be changing, but also because the continual redistribution of edges would drive
the network toward a Poissonian degree distribution. To avoid tracking the changes in the degree
distribution, we assume a Poissonian distribution for the susceptible nodes at all times, γS = 1.

Outbreak dynamics Plugging the moment closure (9) into the dynamical equations (8), we ob-
tain a system of four coupled differential equation in four variables, I(t), [SS](t), [SI](t), and
[SS](t), and with parameters denoted by k0, ∆, β, r, and α. We note that the equations satisfy the
conservation law

˙[SI] + ˙[SS] + ˙[II]−∆İ = 0, (10)

which reflects the fact that the total number of edges in the network is directly related to the number
of infected nodes, since each infection event introduces ∆ edges, and each recovery removes the
same number. Therefore, we can eliminate [II] from the system of equations, replacing it with
[II] = 1

2
k0 + ∆I − [SS]− [SI], and be left with three coupled ODEs for three variables.

The state where there are no infected nodes is a fixed point of the system, given by I = 0,
[SI] = 0, and [SS] = 1

2
k0. To determine whether this fixed point is stable, that is, if a small

infection spreads as an epidemic or dies out, we would normally look at the Jacobian of the system
of ODEs at the fixed point. However, the Jacobian is singular at this fixed point (note that kI is
not well defined when I = [SI] = [II] = 0). In order to properly analyze the stability, we first
have to perform a change of variables that resolves the singularity. One change of variable that
accomplishes this task is

z1 =
I

k0 + 2∆I − [SI]− 2[SS]

z2 = k0 + 2∆I − [SI]− 2[SS]

z3 =
1
2
k0 + ∆I − [SI]− [SS]

k0 + 2∆I − [SI]− 2[SS]
.

(11)

The values of the old variables at the fixed point, I = [SI] = [SS] − 1
2
k0 = 0, do not determine

the values of z1 and z3. So, we solve the equations ż1 = ż3 = 0 to determine the values of z1 and
z3 at the fixed point.

The Jacobian of the time derivatives, ż1, ż2, and ż3, is generically nonsingular at this fixed
point, and its eigenvalues determine the stability of the fixed point. If all eigenvalues are negative,
the fixed point is stable. If any eigenvalue is positive, the fixed point is unstable. For any value
of the parameters k0, ∆, r, and α there is a critical value of the transmissibility βc, such that, if
β < βc, the I = 0 fixed point is stable, and if β > βc, the I = 0 fixed point is unstable. We
find the critical value to be βc = r/

(
τ +
√
k0 + τ 2

)
, where τ = 1

2
(k0 + δ − 1). At this value of

β, the infection free fixed point is given by z1 = βc/(1 + βc), z2 = 0, and z3 = βc/2(1 + βc).
The Jacobian can be directly calculated and shown to have two negative eigenvalues and one zero
eigenvalue, as expected.
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Figure S3: Steady state size of the infected population in the case of instantaneous link addi-
tion. The figure shows the value of the equilibrium value of I as a function of β/r when k0 = 3
and ∆ = 2. When β < βc (here βc = r/5), the only possible equilibrium is I = 0. When β > βc,
the equilibrium state I = 0 becomes unstable, and a steady equilibrium with I > 0 emerges.

In the case of a contagion without connectivity benefit, i.e. ∆ = 0, we recover the classic SIS
dynamics and βc = r/k0 [31,32]. However, our result for βc is not merely the critical transmission
rate for a network with Poisson degree distribution of average k0 + ∆. On the one hand, the degree
distribution of infectious individuals is truncated at values below ∆; it is therefore not exactly
Poisson for small k0 and this tends to increase βc. On the other hand, and more interestingly, the
expected degree of susceptible nodes are also growing with the number of infectious nodes. This
last detail is crucial: there is a feedback between the expected epidemic size and the connectivity
of the network which lowers the epidemic threshold βc.

Steady-state Convergence When β > βc, a new stable fixed point emerges with I > 0. This
represents the stable steady-state value of the infected population, where infections and recoveries
occur at the same rate. This value can be obtained by solving the algebraic set of equations given
by setting İ = ˙[SI] = ˙[SS] = 0.

Figure S3 shows the steady-state fraction of infected individuals as a function of β. As β
increases, so does the long-term percentage of infected individuals. The figure also depicts the
effect of α on the long term percentage. As α decreases, the targeting of infected individuals
improves, and thus the fraction of infected individuals increases.

Fixation dynamics under perfect targeting We now consider the dynamics at the conclusion of
the epidemic. If we consider the case with no recovery (r = 0), then the susceptible population
always tends to decrease. The rate of this decrease varies with the value of the assortative bias α
and the number of new links generated per infection ∆.

The governing equations in Eq. 4 become simpler in the case where S � 1 with no recovery.
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The term [SS] becomes negligibly small as it is second order in the number of S nodes (it requires
two S nodes to be connected to one another). The final term in the ˙[SI] equation is

β[SI]
S

S + Iα
(12)

(12) has two regimes with qualitatively different behavior: α > 0 and α = 0.

(12) becomes 1 for S � Iα. The full system thus becomes

Ṡ = −β[SI]

˙[SI] = β[SI]

(
− [SI]

S
− 1

)
+ β[SI]∆.

(13)

The solution of these coupled ODEs can be seen with a variable substitution called x.

x =
[SI]

S
(14)

With this definition, we get the following relation:

ẋ =
˙[SI]

S
− [SI]

S

Ṡ

S
(15)

By substituting the evolution equations for Ṡ and ˙[SI], we get an uncoupled equation.

ẋ = βx(−x− 1 + ∆)− x(−βx) = (∆− 1)βx (16)

Using Eqn 13, we get the system of equations:

ẋ = (∆− 1)βx

Ṡ = −βxS
(17)

In this coupled set of equations, log x changes at a rate (∆−1)β, and log s changes at a rate of βx.

x(t) ∼ exp[(∆− 1)βt]

S(t) = exp

(
−β
∫ t

0

x(t′)dt′
)

(18)

From (18), we see that if ∆ < 1, the proportion of S nodes decays at an exponential rate
that is decaying exponentially. That is, as S decreases, the rate at which S decreases gets slower
and slower. Interestingly, because of the exponentially decreasing rate, even as t → ∞ there are
always individuals who are not infected.

On the other hand, if ∆ > 1 the rate at which S decreases grows in time. In this regime,
S never fully reaches 0, but it tends to 0 more and more quickly as the epidemic spreads. At the
critical point, ∆ = 1, the rate at which S shrinks is constant.
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Fixation dynamics under imperfect targeting If α > 0, S
S+Iα

approaches S
α

as S approaches 0.
The coupled ODE system reduces to

Ṡ = −β[SI]

˙[SI] = β[SI]

(
− [SI]

S
− 1

)
+ β[SI]∆

S

α
.

(19)

Here, there are two regimes:
I � S � α

α� S
(20)

In the first regime where I � S � α, S
S+Iα

is approximately 1 which means that the
behavior is the same as if there is perfect targeting (α = 0). However, as the infection proceeds
and S gets sufficiently small, the regime switches. As a result S

S+Iα
is approximately 0, and so

the behavior is as if ∆ = 0. As S becomes very small, new links to susceptible individuals are
added with increasing low frequency. Thus, in the final stages of the epidemic, the additional links
added by newly infected individuals only have an impact if they perfectly attach to susceptible
individuals.

Continuous link creation We now consider a case where the extra connectivity accrues through-
out the time an individual is infected. To keep the analysis simple, we ignore the possibility that
an infected node recovers. The system of differential equations describing the system is

İ = −Ṡ = β[SI]

˙[SS] = −β [SI] 2
[SS]

S

˙[SI] = β[SI]

(
2

[SS]

S
− [SI]

S
− 1

)
+ I∆

S

S + Iα

˙[II] = β[SI]

(
[SI]

S
+ 1

)
+ I∆

Iα

S + Iα

(21)

Outbreak dynamics In the continuous link-addition model (21), the spread of the epidemic ac-
celerates due to the continued increase of the degree of infected nodes. To determine the outbreak
spreading rates, we consider the equations for İ and ˙[SI] shown in (21). When I � 1, the non-
negligible terms are

İ = β[SI]

˙[SI] = β[SI] (k0 − 1) + I∆.
(22)

This coupled system of ordinary differential equations can be rewritten using the compound vari-
able y = (I, [SI])T , giving the simple equation ẏ = Ay, where

A =

(
0 β
∆ β(k0 − 1)

)
(23)
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The eigenvalues of A are λ± = 1
2

[
β(k0 − 1)± (4∆β + β2(k0 − 1)2)1/2

]
. At long times, both

I and [SI] grow exponentially as exp(λ+t), and the time scale for this behavior to take hold is
1/(λ+ − λ−).

Even though infected individuals keep acquiring new links and their degree grows without
bound, the rate of growth of the epidemics saturates at λ+ because the newly-infected individuals
start with the background number of neighbors, k0. Therefore, the degree of the typical infected
individual will grow to a steady state value in the exponential growth phase of the epidemic.

Fixation dynamics To analyze fixation dynamics we focus on the following equations in which
we assume that [SS]/S is negligible:

Ṡ = −β[SI]

˙[SI] = −β[SI]

(
[SI]

S
+ 1

)
+ ∆

S

S + Iα
.

(24)

If targeting is imperfect (α > 0), when S becomes small enough that S < α, the last term in
(24) will be approximately equal to ∆S/α. Using this substitution, we get the following equation
for the time evolution of the variable x = [SI]/S:

ẋ = −βx+
∆

α
. (25)

This will eventually saturate to the steady state value x∗ = ∆/(αβ), and the susceptible rate,
governed by the equation Ṡ = −βxS, will decay exponentially as exp(−βx∗t) = exp(−∆ · t/α).
In contrast to the instantaneous link-addition model, the rate does not decay exponentially. Thus,
the fraction of S decreases faster and as t→∞, S → 0.

However, if α = 0 (perfect targeting) then the last term of (24) is simply ∆. Unlike all other
cases, the rate of susceptible individuals will become zero at a finite time. To see why this behavior
is the solution to the differential equations when S approaches zero, we use the following ansatz:

S(t) = S0(t
∗ − t)a

[SI](t) = [SI]0(t
∗ − t)b.

(26)

The first equation of (24) gives

− aS0(t
∗ − t)a−1 = −β[SI]0(t

∗ − t)b, (27)

implying that a = b + 1. This also implies that near t∗, [SI]/S � 1, and therefore, the second
equation of (24) gives

− b[SI]0(t
∗ − t)b−1 = −β [SI]20

S0

(t∗ − t)b−1 + ∆. (28)
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For both right-hand-side terms to be comparable, we need b = 1. Finally, we recover the prefactors
S0 = 1

2
β∆ and [SI]0 = ∆ from (27) and (28).

Interestingly, if α is small but nonzero, then as in the instantaneous link-adding scenario, the
dynamics of the infection will cross over from a regime that behaves as if α = 0, that is where
S approaches zero quickly and appears headed to vanish at some finite time, to, once S becomes
comparable to α, a regime of regular exponential decay with rate constant ∆/α.

Another interesting consequence is the difference in the continuous case between perfect
targeting and even slightly flawed targeting (α > 0). If the targeting is perfect, then all of the
individuals will be infected in finite time for any positive ∆, the number of links created per unit
time. In constrast, no matter how large the value of ∆, if α is non-zero, it still takes an infinite
amount of time to infect all individuals. Error-prone infected individuals cannot convert the whole
population in finite time as eventually the false-positive identifications dominate the true-positive
ones as the fraction of susceptible individuals becomes increasingly small. Alternately, converting
the entire population in finite time requires each infected individual to create a non-zero number of
new links with susceptible individuals on average per time step. Of course, the time for the number
of susceptible individuals to reach a small fraction of the population (S < ε) will depend greatly
on the link generation rate for either α regime.

C Epidemics with utility benefit

General Dynamics In the main text, we showed how explicit preferences can lead to strategic
assortative or disassortative rewiring. From this, we can derive the rates of change of I , S, [SI],
[II] and [SS]. [SI], [II] and [SS] are normalized to sum to the average number of edges per
individual E/N .

Consider a population of size N with E edges. We assume a well-mixed population.

The infection dynamics without rewiring are the same as in the connectivity benefits model,
without recovery r = 0 or connectivity benefit ∆ = 0 (see Eq. 4 in the main text):

İ = β[SI]

˙[SI] = β[SI]

(
2

[SS]

S
− [SI]

S
− 1

)
˙[II] = β[SI]

(
[SI]

S
+ 1

)
and S = 1− I , [SS] = E

N
− [SI]− [II].

26



Infected individuals that rewire disassortatively do so at a rate:

ri−i→s =
I

E
(1− (1− αII)kI )

This is the proportion of infected individuals that have at least one II link they wish to replace by
an SI link. Here αII = 2[II]

[SI]+2[II]
is the probability that a stub coming out of an infected node is an

II stub, and kI = E [SI]+2[II]
NI

is the average degree of infected nodes.

Infected individuals that rewire assortatively do so at a rate:

ri−s→i =
I

E
(1− (1− αISI)kI )

αISI = [SI]
[SI]+2[II]

is the probability that a stub coming out of an infected node is an SI stub.

As we saw, for susceptibles, assortative and disassortative rewiring rates can depend on the
number of infected neighbors. We use Eq. 6 and compute the probability that a node S meets the
condition for disassortative rewiring assuming Sn = kS−In where kS ≡ E [SI]+2[SS]

NS
is the average

degree of susceptible nodes. Susceptibles prefer assortative rewiring as long as In < În, where

În =
−dS/β − cI + (dI − dS)− (bI − bS)kS − (cI − cS)NI

2(dI − dS)

Therefore, the rewiring rates for susceptibles:

rs−i→s =
S

E
P (1 ≤ In ≤ În) =

S

E

În∑
j=1

(
kS
j

)
(αSSI)

j(1− αSSI)kS−j

rs−s→i =
S

E
P (1 ≤ Sn ≤ kS − În) =

S

E

kS−În∑
j=1

(
kS
j

)
(αSS)j(1− αSS)kS−j

where αSS = 2[SS]
[SI]+2[SS]

and αSSI = [SI]
[SI]+2[SS]

.

We use these rates and the analysis of predicted utility in the main text to derive dynamics
corresponding to the three cases considers: evangelizers, cool kids, and snobs.

Evangelizers case The dynamics in the evangelizers case is given by the following ODEs:

İ = β[SI]

˙[SI] = β[SI]

(
2

[SS]

S
− [SI]

S
− 1

)
+
I

E
(1− (1− αIII)kI ) +

S

E
(1− (1− αSS)kS)

˙[II] = β[SI]

(
[SI]

S
+ 1

)
− I

E
(1− (1− αISI)kI )

27



To examine the breakout dynamics, consider the initial situation where I � 1, [SI]2 ≈ 0,
[SS]/S ≈ 1, αSS ≈ 1, αIII ≈ 0. We can simplify this system to:

İ = β[SI]

˙[SI] = β[SI] + 1/E

Initial growth is thus exponential.

To examine the fixation dynamics, consider the limiting situation where S � 1, [SS] ≈ 0,
αSS ≈ 0, αIII ≈ 0. We can now simplify this system to:

İ = β[SI]

˙[SI] = −β[SI]

(
[SI]

S
+ 1

)
+ I/E

These equations take the same form as (24) when α = 0 (continuous link addition with perfect
targeting), which was shown to correspond to super-exponential fixation.

Cool kids case The cool kids case gives the following ODEs:

İ = β[SI]

˙[SI] = β[SI]

(
2

[SS]

S
− [SI]

S
− 1

)
− I

E
(1− (1− αISI)kI ) +

S

E
(1− (1− αSS)kS)

˙[II] = β[SI]

(
[SI]

S
+ 1

)
+
I

E
(1− (1− αISI)kI )

Snobs case In the snobs case În = Sn+2
3

= kS+2
4

. The dynamics are described by the following
equations:

İ = β[SI]

˙[SI] = β[SI]

(
2

[SS]

S
− [SI]

S
− 1

)
− I

E
(1− (1− αISI)kI )

− S

E

(kS+2)/4∑
j=1

(
kS
j

)
(αSSI)

j(1− αSSI)kS−j +
S

E

kS−(kS+2)/4∑
j=1

(
kS
j

)
(αSS)j(1− αSS)kS−j

˙[II] = β[SI]

(
[SI]

S
+ 1

)
+
I

E
(1− (1− αISI)kI )
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Figure S4: Comparison between the agent-based model and the mean-field approximation (ODE
model) presented in the main text. For both models, parameters are N = 1000, E = 4000, initial
infection rate 0.05, β = 5×10−4. The solid line indicates the mean, and the shaded area represents
the 10% to 90% percentiles across 100 runs.

Agent-based version: robustness of mean-field results to stochasticity and heterogeneity The
ODE model can be seen as a mean-field approximation of a discrete stochastic epidemic-spreading
process, one with local differences in connectivity, degree heterogeneity, and correlated network
properties. In order to check the robustness of the mean-field approximation, here we present
simulation results of a stochastic discrete agent-based version of the same basic model.

In the agent-based model, agents have the same utility function as described in the main text.
N agents are distributed on a network withE edges, which starts off as Erdős-Rényi random graph.
At each time step, a randomly selected individual first attempts to adaptively rewire, following
equations Eq. 5 and Eq. 6 according to its state and neighborhood. Afterward, each infected-
susceptible edge leads to the spread of an infection with probability β. Figure S4 compared the
results of the ODE model with the results of the agent-based simulations, for each of the three cases
defined in the main text as well as a no-rewiring condition. Parameters are set same as in the main
text (population of N = 1000 agents, E = 4000 edges, initial infection rate 0.05, β = 5 × 10−4).
We see that the dynamics are qualitatively the same in both the discrete agent-based version and
the continuous mean-field version.
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