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Abstract
We present a causality-inspired adjusted plus-minus model for evaluating individual players from
their performance on a team. We take an explicitly causal approach to this problem, defining the
value of a player to be the expected change in the score had we substituted the player for one who
has zero value. (This quantity is “causal” in the sense that it is an inference about a hypothetical
intervention.) We adapt recent ideas of factor modeling to handle the indirectly measured con-
founding in estimating player values, considering each player to be a “treatment” who contributes
to the outcome of the game. We demonstrate the behavior of the model on data about soccer and
basketball.
Keywords: sport analytics, causal inference, adjusted plus-minus, ridge regression, rating systems

1. Introduction

A key task in sports analytics is to evaluate the individual performance of a player on a team. Such
evaluations affect scouting, trades, and predictions about a match. Intuitively, historical data about
matches—who was playing and what was the outcome—should provide statistical evidence for the
value of each player. But players are on the field together, and it is challenging to untangle the
relative contributions of each.

The traditional approach to solving this problem is with the adjusted plus-minus model (APM).
While there are many variants of the method, APM is basically a regression: the covariates are who
is playing in the match, the outcome is the difference in score, and players on one team make a
positive contribution while players on the other team make a negative one. Since it’s a regression,
APM is essentially a model for the conditional expectation of the score given who is on the field.
With a fitted APM, the per-player coefficients represent the values of each.

This paper builds on APM. However, rather than model a conditional expectation, we take an
explicitly causal approach to evaluating individual players. Specifically, we define the value of a
player ℓ to be the expected change in the score had we substituted player ℓ for a player who has zero
value. (This quantity is “causal” in the sense that it is an inference about a hypothetical intervention.)
We will develop a statistical method to estimate these quantities from historical data.

The challenge to this task, as for all causal inference from non-experimental data, is the pos-
sibility of unmeasured confounding variables, variables that affect both who is on the field and
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the outcome of the match. When we do not account for those variables, the conditional expecta-
tion (such as from APM) is biased away from the targeted interventional expectation. In historical
sports data, for example, a coach may select the lineup based on knowledge of the opposing team’s
strengths and weaknesses. While the coach’s decision might lead to a better score, the fitted APM
will overestimate the value of the players on the field (relative to their causal value).

This paper develops a method to estimate the “causal” value of a player. The key observation
is that, while many confounding factors are unmeasured, some are indirectly measured in the data.
For example, traces of the (unobserved) coaching style may be present in the (observed) lineups set
up by each coach. To this end, we adapt recent ideas of latent factor modelling to uncover indirectly
measured confounding (a.k.a. pervasive confounding) (Abadie et al., 2015; Agrawal et al., 2021;
Wang and Blei, 2019a; Frot et al., 2019). The idea is to treat the estimation problem as a causal
inference problem, one where each player on the team is a “treatment” and the score of the game
is the outcome. There are many players, hence many treatments. The method developed here will
use an APM-like regression but include additional variables that are also derived from the historical
data. We refer to it as CAPM, causality-inspired adjusted plus-minus. In more detail, CAPM first fits
a latent variable model to the player lineups of each match. This model captures which players are
likely to appear together on the field. CAPM then uses this model—in particular its latent variables—
to calculate a substitute for (some of) the indirectly measured confounders. Finally, CAPM uses the
substitute confounder to correct for bias in an outcome model, an APM of the game score that
includes the latent variables. The per-player coefficients in this outcome model reveal the value of
each player.

We will derive our model and efficient algorithms for each of its components. We will develop a
Poisson-factorization model of lineups and use an APM model for the outcome. We will then study
this method on synthetic and real data of four European professional soccer leagues from 2014
to 2016 and five NBA basketball seasons from 2014 to 2018. Compared to APM, our approach
performs well in predicting score differences using the lineups of the teams in play. Further, it leads
to player rankings that are more consistent with player ratings produced by human experts.

We note that there has been a fair amount of academic discussion about the ideas of using
latent variable modeling to adjusting for unobserved confounding as proposed in Wang and Blei
(2019a). One thread centers around the theory of the method, and in particular around the scope and
relevance of the required assumptions; see D’Amour (2019); Ogburn et al. (2019); Wang and Blei
(2019b); Ogburn et al. (2020), and the clarified theory in Wang and Blei (2020). This discussion
reveals that the assumptions for a truly unbiased estimate of the causal value of a player are strict,
and they are unlikely to hold completely. Despite this fact, in our studies we found that CAPM
successfully removes some of the bias of an unadjusted estimate; see Section 4. More broadly, we
discuss the limitations of CAPM in Section 3.4. Another relevant thread of discussion is Grimmer
et al. (2020). It shows how classical regression (here, APM) can also be seen as targeting the causal
estimate when the assumptions of CAPM hold. It further finds situations where simple regression
outperforms causal adjusted algorithms, particularly where the number of datapoints (here, matches)
is much larger than the number of treatments (here, players in the league). In the context of Grimmer
et al. (2020), the studies of Section 4 show a different empirical result, multi-causal situations where
a causality-inspired algorithm outperforms regression-based estimates.

The main contributions of this work are to quantify the impact of each player as a causal infer-
ence, and to develop an algorithm for estimating it. This is an original approach for addressing the
challenging and relevant problem of how to evaluate individual players in team sports.

2770



CAPM

We evaluate the approach on basketball and soccer, performing studies with both real and syn-
thetic datasets. In synthetic studies, we show that the algorithm accurately recovers the (synthetic)
ground-truth performance of individual players. In real data analysis, we show that the algorithm
more accurately correlates with external assessments of player quality, such as FIFA rankings (for
soccer), and better predicts the results of held-out games.

2. Related work

Evaluating player performance in team sports is an active research area. There are various ways to
evaluate players, see Santos-Fernandez et al. (2019) for a review of Bayesian methods or Terner and
Franks (2021) for a review of methods in basketball. The main distinction between the methods is in
which data are used to make the estimates. One type of approach focuses on individual-player data,
such as event-data (e.g., number of passes or shots) (Thomas et al., 2009) or individual physical
or mental characteristics (Carvalho et al., 2017; Giles et al., 2018). Another type of approach uses
tracking data to consider team-level plays, such as possessions or defensive actions (Cervone et al.,
2016; Le et al., 2017; Bu et al., 2019; Franks et al., 2015; Fernández et al., 2021).

This paper builds on a third type of approach, which involves regressing the lineup of the team
to the outcome of the game. Compared to models of event data, an advantage of regression models
is that they account for the impact of all players simultaneously. In contrast, event-data models are
typically focused on a given player at a time, regardless of who else is in the field. In particular, the
adjusted plus-minus (APM) algorithm is one of the main models used by professional teams and
mainstream media. APM originates from seminal work in basketball (Leonhardt, 2003; Rosenbaum,
2004) and hockey (Sill, 2010; Macdonald, 2011a,b). Researchers have proposed several variants of
APM (Ilardi and Barzilai, 2008; Deshpande and Jensen, 2016; Thomas et al., 2013; Gramacy et al.,
2013; Nandakumar and Jensen, 2019; Hvattum, 2019), but the largest improvement in performance
is due to including a ridge regression penalty (Sill, 2010). Recently, basketball practitioners have
made efforts to further improve APM, by integrating information derived from tracking data Snarr
(2020); Silver (2019); Medvedovsky or by using structured priors and adjustments for luck BBall
Index Team.

The field of soccer analytics has only recently used methods like APM. These various mod-
els differ from each other in terms of what variables they consider in the regression (Pantuso and
Hvattum, 2021; Sæbø and Hvattum, 2019); the types of priors (Matano et al., 2023); the choice
of outcomes (Kharrat et al., 2020); the presence of additional information e.g. human-based rank-
ing (Pelechrinis and Winston, 2021); how segments are wheighted (Schultze and Wellbrock, 2018).
This paper further builds on APM, embedding it in a larger methodology for estimating the causal
value of a player.

The field of soccer analytics has only recently used methods like APM. These various models
differ from each other by what variables they consider in the regression. Some include team or
league indicators in addition to players (Pantuso and Hvattum, 2021; Sæbø and Hvattum, 2019);
some use different priors for the regression parameters, e.g. Laplace, Gaussian, or domain-specific
priors (Matano et al., 2023); some consider different outcomes (Kharrat et al., 2020), e.g. expected
goals, win/loss or score differential; some use players’ position and human-based ratings (Pelechri-
nis and Winston, 2021) and finally some weigh the segments differently, e.g. giving less weight to
“garbage time” (Schultze and Wellbrock, 2018). This paper further builds on APM, embedding it
in a larger methodology for estimating the causal value of a player.
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There are a few works explicitly focusing on causal analysis in sports analytics, though none
analyze lineup data as done in this paper. Gauriot and Page (2019) isolate quasi-experimental situa-
tions in soccer where the success of players is as good as random (shots hitting the post vs entering
the goal taken from similar locations) to estimate the causal effect of a lucky goal on the players’
evaluation. Yam and Lopez (2019) use causal reasoning to assess the unobserved benefit that teams
miss in not utilizing a fourth down strategy in American football. Sandholtz and Bornn (2020) use
latent Markov decision processes to estimate what could have happened if a basketball player’s shot
policy changes. Terner and Franks (2021) discuss the open problem of causal analysis for sports.

The key challenge to causal inference from observational data is the problem of latent con-
founding, unobserved variables that affect both the treatment and outcome. Here we employ the
idea of factor modeling (Wang and Blei, 2019a; Abadie et al., 2015; Agrawal et al., 2021) for la-
tent but indirectly measured confounders. Other popular approaches to latent confounding includes
proxy variables (Miao et al., 2018; Kuroki and Pearl, 2014), instrumental variables (Angrist et al.,
1996), and front door adjustment (Pearl, 1995). These approaches often require measuring addi-
tional covariates that satisfy specific criteria, e.g. proxy variables that are descendants of the latent
confounder but do not causally affect the outcome. We focus on a setting where such covariates are
not available, and these approaches do not apply.

3. Causal inference for team sports

When we evaluate a player, we aim to infer their individual contribution from the collective perfor-
mance of the team. This paper manifests this individual contribution with a causal question: “How
would the results of a match be different had this player been substituted for another?” Our goal is
to answer this question by analyzing observational datasets of sports matches.

3.1. Player evaluation as a causal inference

We observe data from sports matches. In this paper, we will analyze data about soccer and basket-
ball. Each dataset contains 𝑚 players who comprise 𝑡 teams; player ℓ is on team 𝑠ℓ . We observe
𝑛 matches (in soccer) or segments of games (in basketball); to keep the language simple, we call
each a game. Each game involves two teams, indexed by 𝑢𝑖 ∈ {1, . . . , 𝑡} and 𝑣𝑖 ∈ {1, . . . , 𝑡}, where
𝑢𝑖 < 𝑣𝑖 . For each game 𝑖, we observe 𝑎𝑖,ℓ ∈ {0, 1}, which indicates whether player ℓ played in
game 𝑖. In the soccer data, 𝑎𝑖,ℓ indicates whether ℓ started the match on the field; in the basketball
data 𝑎𝑖,ℓ indicates whether player ℓ was on the court during segment 𝑖. (A segment is a portion of
the game without substitutions.) Finally we observe 𝑦𝑖 , the differential outcome when 𝑢𝑖 plays 𝑣𝑖 .
In soccer it is the difference in goals; in basketball, it is the difference in points. A positive value of
𝑦𝑖 favors team 𝑢𝑖; a negative value favors team 𝑣𝑖 .

Our goal is to estimate the value of a player, which we treat as a causal inference. The science
of causality, in general, is about trying to answer questions about a hypothetical intervention on the
world (Pearl, 2009; Peters et al., 2017; Hernán and Robins, 2016; Imbens and Rubin, 2015). In this
spirit, we define the value of a player in the following way. Consider the player in question ℓ, their
team 𝑡ℓ , and a special “zero-value” player ∅. We define the value of player ℓ to be the expected
change in the differential score between two scenarios, one where we “force” player ℓ to play and
player ∅ not to play, and one where we force player ∅ to play and player ℓ not to play. (In both, the
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team of player ℓ is the first team in the differential.) We denote this quantity Λℓ :

Λℓ := 𝔼 [𝑌 ; do(𝑎ℓ = 1, 𝑎∅ = 0, 𝑢 = 𝑡ℓ)] − 𝔼 [𝑌 ; do(𝑎ℓ = 0, 𝑎∅ = 1, 𝑢 = 𝑡ℓ)] , (1)

where 𝑢 is the random variable denoting the first team, i.e. the team of player ℓ. This quantity is
the difference in score-differential between the two interventions. The expectation is with respect to
the distribution of games, including the opposing team and who is playing (other than player ℓ and
player ∅).

As we discussed above, one of the most widely used methods for evaluating players is Adjusted
Plus-Minus (APM) with ridge regression (Sill, 2010). APM assumes that each player ℓ contributes
𝛽ℓ to the expected score for their team, and then models the score differential with a regression.
Specifically, it uses lineup data—lineups and match outcomes—to estimate the players’ values from
a penalized regression,

𝛽∗ = argmin
𝛽


∑︁
𝑖

[
𝑦𝑖 −

( ∑︁
ℓ:𝑡ℓ=𝑢𝑖

𝛽ℓ𝑎𝑖,ℓ −
∑︁

ℓ:𝑡ℓ=𝑣𝑖

𝛽ℓ𝑎𝑖,ℓ

)]2
+ _∥𝛽∥22

 . (2)

When we use APM, we treat the optimizer 𝛽∗
ℓ

as an estimate of the value of each player relative to
a “replacement level” player, i.e., a player with 𝛽 = 0 (Thomas and Ventura, 2015).

The APM value of a player differs from what we defined in Eq. 1, however, because the APM
value is an observational quantity (a conditional expectation) rather than a causal one. As for all
causal inference from observational data, the problem to estimating Eq. 1 is that there may be
unmeasured confounding—variables that affect both who is playing in the game and the ultimate
difference in score. For example, suppose a coach tends to place a particular player in easy-to-win
matches to give other (better) players a rest. APM would estimate a high 𝛽∗

ℓ
for this player, but the

causal value Λℓ in Eq. 1 may not be as high. Our goal is to develop an algorithm for estimating the
value of each player that helps reduce some of the bias due to this confounding.

3.2. Using adjustment to evaluate the value of a player

Before we tackle the problem of unobserved confounders, however, we will discuss the main strat-
egy for causal inference that we will use, backdoor adjustment (Pearl, 1993) and 𝑔-estimation (Robins,
1986). Our method for handling unobserved confounders will build on this strategy.

For now, suppose we can observe a per-match variable 𝑤 that is admissible for adjustment (Pearl
et al., 2009), i.e., the confounders. The game data comes from the true distribution of who is playing,
the confounders, the line-ups, and the score, p(𝑢, 𝑣, 𝑤, a, 𝑦).

If we observe 𝑤, then we can use this data, along with backdoor adjustment, to estimate the
value of a player in Eq. 1. First, define notation for the conditional expectation of the score given
that team 𝑡ℓ is playing, whether player ℓ is on the field, whether player ∅ is on the field, and the
confounders 𝑤,

ˆ̀ℓ (𝑤, 𝑎ℓ , 𝑎∅) = 𝔼 [𝑌 |𝑊 = 𝑤, 𝐴ℓ = 𝑎ℓ , 𝐴∅ = 𝑎∅ ,𝑈 = 𝑡ℓ] , (3)

where here we used capitalized and lowercase letters (e.g. 𝐴ℓ and 𝑎ℓ to distinguish explicitly the
random variable from its possible value, respectively. This expectation is over the distribution of the
opposing team and who else is on the field (other than ℓ and ∅). Note that while the expectations in
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Eq. 1 are interventional, this expectation is conditional; it can be estimated from the observational
data (where confounders 𝑤 are observed).

Using these conditional expectations, we can write the value of a player as an integral over the
adjustment variables 𝑤,

Λℓ =

∫
p(𝑤) (`(𝑤, 1, 0) − `(𝑤, 0, 1)) d𝑤. (4)

This equation is an identification formula for the value of a player, an expression of a causality
quantity in terms of an observational distribution. It uses backdoor adjustment (Pearl, 1993).

The identification formula is a gateway to causal estimation. Consider a (hypothetical) dataset
that contains this confounder. With this data, estimate `(𝑤, 𝑎ℓ , 𝑎∅), where (𝑎ℓ , 𝑎∅) = (1, 0) or
(𝑎ℓ , 𝑎∅) = (0, 1). Then use this estimate to approximate Eq. 4, for example with Monte Carlo.

Setting aside the issue that we do not observe 𝑤𝑖 , what do we assume when we write the causal
inference of Eq. 1 with Eq. 4, and then estimate it? The main assumption is that 𝑊 blocks all
backdoor paths (Pearl et al., 2009) between𝑌 and 𝐴ℓ , 𝐴∅ ,𝑈. (Loosely,𝑊 includes all confounders.)
Further, there is a positivity assumption, which requires 𝑃((𝐴ℓ , 𝐴∅ ,𝑈) ∈ S |𝑊) > 0 for all sets S
such that 𝑃(S) > 0. It says the value of the confounder𝑊 shall not limit the support of (𝐴ℓ , 𝐴∅ ,𝑈).
Loosely, any of the marginally possible values of (𝐴ℓ , 𝐴∅ ,𝑈) shall also be possible given𝑊 .

All this said, the premise of this paper is that we do not observe the confounders 𝑊 ; they are
often only indirectly measured. We now discuss CAPM, a method for estimating the causal value of
a player in the face of (some) unmeasured confounders.

3.3. The causality-inspired adjusted plus-minus model

The key idea behind CAPM is that the inference of Eq. 1 is a causal inference. Each player on the
field is a “treatment” who contributes to the final score, and we are interested in making causal in-
ferences about each one. Here we appeal to the ideas of factor modeling for causal inference (Wang
and Blei, 2019a; Abadie et al., 2015; Agrawal et al., 2021; Frot et al., 2019), which develops a style
of algorithm, that uses data about the multiple treatments to account for some of the unobserved
but indirectly measured confounding. We will develop this methodology for estimating the value
of each player. Such algorithm works as in two stages. First, we construct a variable that renders
the line-up conditionally independent; for example, Wang and Blei (2019a) use probabilistic factor
models (Bishop, 2006) to construct such a variable, a model of which players are playing in a game.
Second, we use the constructed variable from the first stage as a “substitute confounder,” one that
we can adjust for in estimating the value of each player in Eq. 1. This stage appeals to the estimation
methods described above, but substitutes the true confounder 𝑤𝑖 with the substitute confounder. The
intuition behind these algorithms is that the factor model captures information about confounders
that are not explicitly observed, but for which there is evidence in the patterns of who is playing.
Returning to the example of the coach’s strategy, hints of the strategy might be revealed in patterns
of how different players co-occur on the field. An offensive strategy might prefer one set of players;
a defense strategy might prefer another.

Loosely, the theory of this approach says that if the constructed variable can render the line-up
conditionally independent, then it has the potential to capture some indirectly measured “multi-
cause” confounders, i.e., the unmeasured confounders that affect many players. But this theory
relies on some idealized assumptions. In practice, the hope is that a good probabilistic factor model
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will capture some of the unmeasured confounding, and that using its constructed variable in a down-
stream inference will reduce the bias from uncorrected estimates.

Before describing the algorithm, however, we state a key causal assumption that is required:
we assume no single-player confounding.1 In other words, the algorithm can never control for
unobserved confounding factors that causally affect one and only of the players. As an example,
suppose that one player is (temporarily) injured. This injury will affect both whether the player is
on the field and the score of the match; it is a single-player confounder. The algorithm will not be
able to control for such confounders.

3.3.1. A PROBABILISTIC FACTOR MODEL OF WHO IS PLAYING IN A GAME

The first stage of CAPM requires a factor model of who is playing in the game. The line-up factor
model is based on Poisson factorization (Gopalan et al., 2015), a Bayesian variation of non-negative
matrix factorization (Lee and Seung, 1999; Cemgil, 2009). The model has K components. Each
player ℓ is associated with a K-vector of non-negative latent features \ℓ ; each team 𝑢 is associated
with a K-vector of non-negative latent features 𝑞𝑢. Whether a player appears in the game depends
on the affinity between the player’s features and the opposing team’s features. More specifically,
the line-up factor model is described by the following generative process:

• Generate latent features for each player ℓ and team 𝑢,

𝑞𝑢 ∼ gammaK(−) 𝑢 = 1, . . . , 𝑡 (5)

\ℓ ∼ gammaK(−) ℓ = 1, . . . , 𝑚. (6)

• For game 𝑖, where 𝑢𝑖 plays 𝑣𝑖 , draw the line-up as

𝑎𝑖,ℓ ∼ Poisson(\ℓ · 𝑞𝑣) if 𝑠ℓ = 𝑢𝑖 (7)

𝑎𝑖,ℓ ∼ Poisson(\ℓ · 𝑞𝑢) if 𝑠ℓ = 𝑣𝑖 (8)

𝑎𝑖,ℓ = 0 if 𝑠ℓ ≠ 𝑢𝑖 and 𝑠ℓ ≠ 𝑣𝑖 (9)

Note this model does not involve the outcome of the game, i.e., the difference in score. Rather, it is
a model of the line-ups alone. The latent variables \ℓ and 𝑞𝑢 capture regularities in how players are
assigned to the field the game is played.

As described above, we use the line-up factor model to estimate a “substitute confounder.” First
we condition on the line-ups from each game and estimate the posterior distribution of the latent
variables p(\1:𝑚, 𝑞1:𝑡 | a1:𝑛). Here we approximate the posterior with variational inference (Blei
et al., 2017; Gopalan et al., 2015). Variational inference for this model scales to the datasets we
will study; see Appendix A for algorithmic details. Following the framework of a causal adjusted
algorithm, we will use the approximate posterior to construct a substitute confounder for each game.
Specifically, we concatenate the posterior expectations of the latent features of which teams are
playing, �̂�𝑖 = (𝑞𝑢𝑖 , 𝑞𝑣𝑖 ), where 𝑞𝑢 ≈ 𝔼 [𝑄𝑢 |A = a]. If the model provides a good fit to the data of
line-ups then this variable will render the 𝑎𝑖,ℓ conditionally independent; see Appendix A.

1. Readers who are familiar with Wang and Blei (2019a) know that for some inferences, it makes another assumption,
which is called “pinpointability.” (Loosely, it means that the unmeasured confounders are an unknown but determin-
istic function of the player line-up.) Pinpointability is a strict assumption, but can be relaxed if the practitioner is
willing to make other (parametric) assumptions; see the discussion in Wang and Blei (2019a, 2020).
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There are several other details to fitting the factor model of line-ups. In variational inference,
algorithmic convergence is determined by monitoring changes in log-likelihood. The latent dimen-
sion 𝐾 is found using 5-fold cross-validation, considering held-out log-likelihood as a measure of
model fitness. Finally, we evaluate the goodness-of-fit of the factor model by performing predictive
checks, similar to those in Wang and Blei (2019a); see Appendix A for details.

3.3.2. THE OUTCOME MODEL

We discussed the lineup factor model for how players are sent to the field. Now we use this model
to estimate Eq. 1, the value of each player. We appeal to the identification formula of Eq. 4, but with
data that does not contain the confounders 𝑤𝑖 . To use Eq. 4 with substitute confounders, we need to
define the conditional expectation

`(𝑧𝑖 , 𝑎ℓ , 𝑎∅) = 𝔼 [𝑌 | 𝐴ℓ = 𝑎ℓ , 𝐴∅ = 𝑎∅ , 𝑍𝑖 = 𝑧𝑖] . (10)

We will define this expectation through an outcome model, a model of the conditional expectation of
the difference in score given the line-ups of both teams and the substitute confounder. The simplest
outcome model uses a difference of regressions,

𝔼 [𝑌 |A = a𝑖 , 𝑍𝑖 = 𝑧𝑖] =(
𝑚∑︁
ℓ=1

𝟙(𝑡ℓ = 𝑢𝑖) 𝑎𝑖,ℓ 𝛽ℓ + 𝛾 · 𝑞𝑣𝑖

)
−

(
𝑚∑︁
ℓ=1

𝟙(𝑡ℓ = 𝑣𝑖) 𝑎𝑖,ℓ 𝛽ℓ + 𝛾 · 𝑞𝑢𝑖

)
.

(11)

This model contains per-player coefficients 𝛽ℓ and per-team confounder coefficients 𝛾𝑢. Eq. 11
models the expected score of each team as a sum of the contributions of each player on the field
along with a term for the substitute confounders. It then subtracts the expected score for team 𝑣

from the expected score for team 𝑢. (Note it is a descriptive model of the conditional expectation of
the score differential; it does not make linear causal assumptions.)

Alternatively, we can use a “reconstructed causes” term in place of the substitute confounder
(Wang and Blei, 2019a). The reconstructed causes are the conditional expectation of the lineup
indicators given the substitute confounder,

𝑎𝑖ℓ := 𝔼 [𝑎𝑖ℓ | 𝑧𝑖] =
∑︁
𝑘

𝑧𝑖𝑢𝑘\ℓ𝑘 . (12)

A linear outcome model with reconstructed causes is,

𝔼 [𝑌 |A = a𝑖 , 𝑍𝑖 = 𝑧𝑖]

=

(∑︁
ℓ

𝟙 [𝑡ℓ = 𝑢𝑖] (𝛽ℓ 𝑎𝑖ℓ + 𝛾ℓ 𝑎𝑖ℓ)
)
−

(∑︁
ℓ

𝟙 [𝑡ℓ = 𝑣𝑖] (𝛽ℓ 𝑎𝑖ℓ + 𝛾ℓ 𝑎𝑖ℓ)
)

.
(13)

This model contains per-player coefficients 𝛽ℓ and per-reconstructed-player coefficients 𝛾ℓ . Wang
and Blei (2019a) found that an outcome model using reconstructed causes often outperforms the
simpler one that directly uses the substitute confounder. We study both in Section 4.

How do we estimate the outcome models? Consider a dataset of line-ups and scores {(𝑢𝑖 , 𝑣𝑖 , a𝑖 , 𝑦𝑖)}.
First estimate substitute confounders, as described in Section 3.3.1, and create an extended dataset
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Algorithm 1 CAPM (causality-inspired adjusted plus-minus)

Require: lineups and score differentials {(a𝑖 , 𝑦𝑖)}
1: Approximate the posterior of the line-up factorization model, Eqs. 5 to 9.
2: Use the posterior to estimate substitute confounders for each game �̂�𝑖 = (𝑞𝑢𝑖 , 𝑞𝑣𝑖 ).
3: Fit the outcome model to the extended dataset

{(
a𝑖 , 𝑦𝑖 , 𝑞𝑢𝑖 , 𝑞𝑣𝑖

)}
, Eq. 11.

4: Return: The value (causal contribution) of each player: {𝛽ℓ}.

{𝑢𝑖 , 𝑣𝑖 , 𝑞𝑢𝑖 , 𝑞𝑣𝑖 , a𝑖 , 𝑦𝑖}. Then estimate the outcome model in Eq. 11 with maximum likelihood,

( �̂�, �̂�) = argmax
𝑛∑︁
𝑖=1

log 𝑝(𝑦𝑖 | a𝑖 , 𝑞𝑢𝑖 , 𝑞𝑧𝑖 ; 𝜷, 𝜸), (14)

where the response is Gaussian with mean in Eq. 11 or Eq. 13. In practice, we use regularized
regression, such as with a ridge penalty. Finally, with the fitted outcome model, use a causality-
inspired adjusted model to estimate the value of each player from Eq. 1. Specifically, we use the
𝑔-estimation strategy of Section 3.2, but where we replace the observed confounders with the sub-
stitute confounders. When we estimate `(𝑧𝑖 , 𝑎ℓ , 𝑎∅) with the linear outcome model of Eq. 11, the
result is to approximate the value of each player by their fitted regression coefficient,

Λℓ ≈ 𝛽ℓ . (15)

See Appendix B for the derivation of this fact and see Algorithm 1 for the full algorithm.

3.4. Limitations of the causality-inspired adjusted plus-minus

We have defined the value of a player as a causal inference (Eq. 1) and described a method for
estimating it. We use the factor model of Section 3.3.1 to identify co-occurrence patterns in how
players are deployed to the field. We then use those patterns to estimate substitute confounders,
variables that help us adjust for some of the confounders that are not explicitly measured.

The theory of factor modeling for indirectly measured confounding says that if the factor model
of the line-up can indirectly measure all the unmeasured confounders, then the causal inference
will be unbiased (Wang and Blei, 2019a, 2020). However, there are many assumptions and caveats
to such an idealization. There are many complexities to the data which the models that comprise
CAPM cannot capture.

At the outset, CAPM can only hope to capture unmeasured multi-cause confounders, variables
that affect multiple players and the outcome. There may be many single-cause confounders in the
data, e.g., individual sports injuries is an immediate example, that no factor model will be able to
capture because they do not induce dependence among the players on the field.

Furthermore, the simple factor model will necessarily be an imperfect model of the line-up.
Many covariates can affect the coaching decisions around the lineup. As examples, consider the
status of the team as home or away, the weather on the day of the game, and other individualized
factors. Even those factors that affect multiple players, as is required for a multi-cause confounders,
may not be absorbed by the simple Poisson factorization described in Section 3.3.1. The perfor-
mance our model may also be compromised when the posterior distributions of the substitute con-
founders are not concentrated. In this case, the posterior mean estimate of the substitute confounder
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would be a poor approximation of the posterior distribution, which can induce bias in downstream
causal estimation.

Another limitation is that the problem setting studied here may suffer from collinearity in the
lineups. In particular, players who almost always appear in the same lineups will have individual
contributions that may not be identifiable. We note that this problem is intrinsic to lineup data and
any analysis based on regression, and it was the original motivation for applying ridge regression
(Sill, 2010). We also note that while ridge regression will result in more stable estimates, it arbitrar-
ily allocates credit approximately equally among the co-occurring players, which may not reflect
actual player contributions. To appropriately handle collinear players, we can consider integrating
other types of data such as tracking or play-by-play events, or using generalizations of factor models
to hypergraphs, that better handle interactions involving more than two players (Contisciani et al.,
2022; Ruggeri et al., 2023) (But these solutions require more complex models and finer-grained
data, which goes behind the scope of this work.)

Finally, there is a time-series element to the line-up that the models above do not account for.
Such an element is particularly prominent in the basketball data, which involves sequential seg-
ments of games, but also in the soccer data when considering the trajectory of a season of games.
Innovations on this procedure could account for the sequential nature of the data.

In short, the factor model cannot provide a foolproof solution to adjusting for unmeasured con-
founding. However, we can use it to absorb some of it. In our empirical studies we study how
effective it is.

4. Empirical studies

We evaluate CAPM with soccer and basketball data, both real and synthetic. We find that CAPM pre-
dicts the outcomes of the match better than the APM model with ridge regression (Eq. 2). Further,
CAPM ranks players in a way that is more consistent with rankings produced by human experts.

Figure 1: Synthetic data: ability to recover
the ground-truth 𝛽. The causality-inspired
adjusted plus-minus (CAPM) produces player
rankings more consistent with the ground truth
rankings than the standard APM for various
confounding levels. We show the Spearman
correlations between ground truth rankings 𝛽GT
versus the inferred ones 𝛽𝑖𝑛 𝑓 for various
confounding levels from low (leftmost) to high
(rightmost), here higher is better. Each
datapoint is the median with bars being the
quartiles over 100 simulations.
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We first study performance on synthetic data of simulated soccer outcomes. In this simulation,
we know the true causal effect of each player. We synthesize confounded data and then evaluate the
accuracy of different estimation methods. We generate data with various degrees of confounding.
Data are generated in two steps: first, we generate confounders and lineups, sampling from a factor
model of Section 3.3.1. (We chose hyperparameters by fitting to real soccer data.) Then we generate
outcomes as in Section 3.3.2, for various levels of confounding (controlled by fixing 𝛽 and 𝛾, the
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per-player coefficient and per-team confounder coefficient, respectively). We generate lineups of
11 players for 380 matches, as in a soccer league of 20 teams and about 500 players. We simulate
the situation where one player per team has a much higher impact on the game than the others.
See Appendix C for details about how the data is generated. From this data, we estimate the value
of each player with different methods, specifically APM and CAPM. We evaluate performance in
terms of closeness-to-truth of the estimates to the true causal estimates. In addition, we consider
an “oracle” model which uses the true unobserved confounders and 𝑔-estimation for an unbiased
estimate of the causal value of each player. (All details are in Appendix C.) Note that in these
synthetic examples there is no evident violation of the assumptions described in section 3.4. In the
study of real data below this may not be the case.

The results show that CAPM better recovers the ground truth values in all regimes except when
there is little confounding; see Figure 1. As confounding increases, so does the improvement of
CAPM’s performance over APM. The Appendix contains further results.

4.1. Real soccer and basketball data

We next study CAPM with soccer and basketball data. For soccer, we use an open-source dataset.2

It contains the starting lineups and match outcomes for four professional men’s league from 2014
to 2016; see Table 1. The datasets do not contain information about player substitutions during a
match. We assume that a player contributed to the outcome if he was in the starting lineup, and we
ignore the contribution of players that entered during the game. For basketball, we use proprietary
NBA datasets containing lineups and scores from 2014 to 2018.3 In contrast to the soccer dataset,
the basketball data does contain detailed information about player substitutions. Thus we split the
games into segments with constant lineups, generating a new segment at each substitution. As for
synthetic data, we estimate the value of each player with APM ridge regression and with CAPM.

Ranking players by estimated value. We present the differences between the causal and ridge
regression model by assessing the ridge regression’s coefficients 𝛽CAPM and 𝛽APM obtained with
and without the confounder (respectively), and rank the players by their decreasing values. While
there is no ground truth for the value of a player, we can compare the rankings provided by CAPM
with soccer ratings given by the FIFA video game4. The FIFA rankings are extracted from the
subjective evaluations of over 9000 data-reviewers as scouts, coaches, and season-ticket holders
into ratings for over 18,000 players (Lindberg, 2016). We calculate the Spearman correlation to
measure how well a set of algorithmic rankings agrees with the expert FIFA rankings. Figure 2
compares the rankings provided by CAPM with those provided by the APM model. This metric
allows to compare the rank of the data points, rather than the actual values of their scores. It is an
appropriate metric in situation like ours where scores calculated using different methods have very
different ranges. For the majority of the datasets, CAPM rankings have higher correlation to the
expert FIFA rankings.

Using APM and CAPM as a predictive model. We next evaluate the two models as predictors
of the outcome of matches. We quantitatively measure their abilities on both regular and distribu-
tional shift test sets. A test set with distributional shift is one that comes from a different distribution
from the training set; a more accurate causal model should be robust to such changes. In particular,

2. https://www.kaggle.com/efezinoerome/analyzing-soccer-data/data
3. https://www.bigdataball.com/
4. www.sofifa.com
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Figure 2: On 2/3 of the datasets, the causality-inspired adjusted plus-muns (CAPM) leads to player
rankings more consistent with the FIFA rankings by human experts. (Above the diagonal line is
better.) Each dot represents the results on a dataset (4 European soccer leagues and 3 seasons); it
shows the Spearman correlation between FIFA rankings (𝑟𝑎𝑛𝑘FIFA) versus CAPM (𝑟𝑎𝑛𝑘𝐶𝐴𝑃𝑀)
and APM (𝑟𝑎𝑛𝑘𝐴𝑃𝑀 ) on this dataset. Rankings are calculated using the inferred 𝛽 and sorting
them, so that the player with highest 𝛽 is the first in the ranking. Red markers denote datapoints
where 𝑟𝑎𝑛𝑘𝐶𝐴𝑃𝑀 has higher Spearman than 𝑟𝑎𝑛𝑘𝐴𝑃𝑀 .

we construct the shifted test set based on the match date, selecting matches that happen at the very
end of the season where the lineups are often different from the typical lineup used during the bulk
of the season.5 In contrast, a regular test set contains matches that are selected uniformly at random
across time. With both shifted and unshifted test sets, we compare CAPM with reconstructed causes
(Eq. 13) to the APM model. For each match, we evaluate the Mean Absolute Error (MAE) between
the predicted outcome and the observed outcome, averaging over all the matches in the test set.

CAPM consistently outperforms APM, across leagues and seasons in both sports, for the major-
ity of unshifted test sets (Figure 3) and all of the shifted test sets (Table 3). This improvement is
confirmed when comparing trial-by-trial, as reported in Table 2. CAPM improves the prediction of
scores and its performance is stable to shift in distribution.

Figure 3: CAPM vs APM model
performance. We show the distribution
of differences in MAE for the predicted
score difference of the CAPM compared
to APM. Error bars indicate standard
deviations and markers show mean,
corresponding to 100 independent trials
of cross-validation; in each trial 20% of
the matches where held-out (test set).
Points above the horizontal line at 0
correspond to better performance for the
CAPM.
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5. Discussion

We developed CAPM, a causality-inspired approach to individual player evaluation in sports matches.
CAPM first fits a Poisson factorization to the team lineups to construct a substitute confounder; then

5. The reason is that, at the end of the season, the relative standing of the teams will determine the fight to reach playoffs,
win the title, or avoid relegation; thus the pressure to win kicks in more urgently than during the rest of the season.
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it uses that substitute in an expanded APM of the match outcome. Across simulated and real matches
of different European soccer and NBA basketball leagues, CAPM makes better predictions than reg-
ularized APM, a widely-used method. It produces player rankings that are more consistent with
human expert rankings. Its main output is a coefficient that indicates the value of a player. This
coefficient accounts for “hidden” confounders, those for which there is evidence in the statistics of
the lineups of the players. By comparing this estimate with that obtained from standard models
as APM on the same input data, scouts can find potential overlooked players and better evaluate
players’ contributions in a game.

CAPM can be easily adapted to serve the specific needs of practitioners. For example, we can
model other team-level outcome variables, such as the number of goals, shots, or assists, and we can
also involve a multivariate outcome variable. In a multivariate analysis, we can include defensive
outcome variables as well, such as the number of rebounds or tackles. More generally, CAPM would
benefit from possible extensions when provided with additional data as expected goal or assists, and
could be customized to focus on evaluating particular skills.

While the data we analyzed only contained lineups and match outcomes, a real-world applica-
tion of CAPM should also condition on known confounding variables, such as who is the home team
or the injury status of individual players. Conditioning on known confounders relieves the factor
model of needing to capture them, and further improves the bias of CAPM’s estimates. In a simi-
lar vein, the Poisson factorization is a simple model of lineups. CAPM provides an application for
good modeling of pre-game lineups, particularly those that use the domain knowledge of the sport
at hand. Finally, the simple algorithm presented here does not account for the sequential nature of
the data. The basketball data, in particular, contains segments within games. Developing causal
adjusted algorithms that model such a time series is a fruitful avenue for future work.
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Appendix A. The factor model: Variational inference and model checking

A.1. Variational inference of the factor model

We give the detailed coordinate-ascent variational inference updates for the parameters of our model
(Blei et al., 2017; Gopalan et al., 2015). The latent variables for the model are the players factors \ℓ
and the team factors 𝑞𝑣 , both are 𝐾-dimensional. First, we posit the mean-field variational family
over the latent variables:

ℎ(\, 𝑞) =
∏
ℓ,𝑘

ℎ(\ℓ𝑘 |𝛾𝑠ℎ𝑎𝑝𝑒ℓ𝑘
, 𝛾𝑟𝑡𝑒ℓ𝑘 )

∏
𝑣,𝑘

ℎ(𝑞𝑣𝑘 |_𝑠ℎ𝑎𝑝𝑒𝑣𝑘
, _𝑟𝑡𝑒𝑣𝑘 ) , (16)
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where all the ℎ(·) are Gamma distributions. After specifying the family, we fit the variational pa-
rameters a = {𝛾, _} to minimize the KL divergence to the posterior, and then use the corresponding
variational distribution ℎ(·|a∗) as its proxy. We optimize the parameters with a coordinate ascent
algorithm, see details in Algorithm 2. Finally, the optimal parameters are obtained by using the
geometric expectations over the posteriors, as explained in Schein et al. (2015):

\ℓ𝑘 =

exp
{
Ψ(𝛾𝑠ℎ𝑎𝑝𝑒

ℓ𝑘
)
}

𝛾𝑟𝑡𝑒
ℓ𝑘

(17)

𝑞𝑣𝑘 =

exp
{
Ψ(_𝑠ℎ𝑎𝑝𝑒

𝑣𝑘
)
}

_𝑟𝑡𝑒
𝑣𝑘

. (18)

A.2. Selecting 𝐾 and model checking

The model takes in input the number of factors 𝐾 . This can be selected using cross-validation,
where we hide part of the dataset (test set), the lineups of a subset of the matches. Then we train the
parameters on the set of matches that where not hidden (training set) and calculates performance
on the test set. Here as performance metric we use held-out log-likelihood and split train and test
sets using 5-fold cross validation. This experiment is repeated for several values of 𝐾 , the best 𝐾 is
selected as the one that gives highest performance averaging over the test sets.

The goodness-of-fit of the factor model is performed using posterior predictive checks, one form
of model checking, similar to those in Wang and Blei (2019a). In detail, we first create a matrix
of lineup held out data 𝑎heldout by randomly hiding matches from the dataset. Then, we create a
replicated dataset 𝑎rep where for each match we draw 𝑠 samples of the two lineups from the posterior
predictive. This is approximated by sampling from 𝑝(𝑎rep

𝑖ℓ
|\̄ℓ , 𝑞𝑢) for 𝑠ℓ = 𝑢𝑖 (and similarly using 𝑞𝑣

for 𝑠ℓ = 𝑣𝑖), where \̄ℓ and 𝑞𝑢 are the posterior mean calculated as in Eqs. 17-18 from the observed
dataset. Finally, we calculate the log-likelihood L(𝑎rep) and L(𝑎heldout) on the replicated and on
the held out dataset, respectively. The posterior predictive p-value is 𝑝(L(𝑎rep) > L(𝑎heldout)). It
can be estimated empirically by sampling 𝑚 different replicated datasets and producing the ratio
𝑚𝑅

𝑚
where 𝑚𝑅 is the number of datasets in which L(𝑎rep) > L(𝑎heldout). We obtain p-values close

to 0.5, suggesting that the model explains the replicated data as well as it explains the heldout data.

A.3. Conditional independence implied by the factor model

Suppose the check above returns that the factor model fits the data well. It implies that the factor
model can generate replicated data that is indistinguishable with the observed data in terms of log-
likelihood. Roughly, it implies that

𝑝(a1:𝑛) =
∫ ∏

𝑖,ℓ

𝑝(𝑎𝑖,ℓ | 𝑞1:𝑡 , \1:𝑚)𝑝(\1:𝑚)𝑝(𝑞1:𝑡 )d\1:𝑚dd𝑞1:𝑡 ), (19)

≈
∏
𝑖,ℓ

𝑝(𝑎𝑖,ℓ | 𝑞1:𝑡 ; \̂∗1:𝑚) (20)

The second equation is due to the posteriors of \1:𝑚 and 𝑞1:𝑡 being close to a point mass 𝑝(\1:𝑚, 𝑞1:𝑡 | a1:𝑛) ≈
𝛿 \̂∗1:𝑚

𝛿𝑞1:𝑡 . Eq. 20 implies that the latents 𝑞1:𝑡 render the matches a1:𝑛 conditionally independent.
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Algorithm 2 causality-inspired adjusted plus-minus (CAPM) factor model: CAVI algorithm
Data: lineups {𝑎𝑖}𝑖 ,number of factors 𝐾 , hyper-prior 𝛼, 𝛽.
Result: parameters \ =

[
\ℓ,𝑘

]
, 𝑞 = [𝑞𝑢].

For all players and teams, initialize the team parameters 𝛾
𝑠ℎ𝑎𝑝𝑒

ℓ
, 𝛾𝑟𝑡𝑒

ℓ
and team parameters

_
𝑠ℎ𝑎𝑝𝑒
𝑢 , _𝑟𝑡𝑒𝑢 at random.

while convergence not satisfied do
For each player/team such that 𝑎𝑖,ℓ > 0 and 𝑠ℓ ≠ 𝑣𝑖 , update the multinomial

𝜙ℓ,𝑣𝑖 ∝ exp
{
Ψ(𝛾𝑠ℎ𝑎𝑝𝑒

ℓ𝑘
) − log 𝛾𝑟𝑡𝑒ℓ𝑘 + Ψ(_𝑠ℎ𝑎𝑝𝑒

𝑣𝑖𝑘
) − log _𝑟𝑡𝑒𝑣𝑖𝑘

}
For each player update the shape and rate parameters of her posterior

𝛾
𝑠ℎ𝑎𝑝𝑒

ℓ𝑘
= 𝛼 +

∑︁
𝑖 |𝑠ℓ≠𝑣𝑖

𝑎𝑖,ℓ𝜙ℓ,𝑣𝑖𝑘 (21)

𝛾𝑟𝑡𝑒ℓ𝑘 = 𝛽 +
∑︁

𝑖 |𝑠ℓ≠𝑣𝑖

_
𝑠ℎ𝑎𝑝𝑒

𝑣𝑖𝑘

_𝑟𝑡𝑒
𝑣𝑖𝑘

(22)

For each team update the shape and rate parameters of its posterior

_
𝑠ℎ𝑎𝑝𝑒

𝑣𝑘
= 𝛼 +

∑︁
𝑖 |𝑣𝑖=𝑣,ℓ |𝑠ℓ≠𝑣

𝑎𝑖,ℓ𝜙ℓ,𝑣𝑘 (23)

_𝑟𝑡𝑒𝑣𝑘 = 𝛽 +
∑︁

𝑖 |𝑣𝑖=𝑣,ℓ |𝑠ℓ≠𝑣

𝛾
𝑠ℎ𝑎𝑝𝑒

ℓ𝑘

𝛾𝑟𝑡𝑒
ℓ𝑘

(24)

end
Calculate posterior estimates:

\ℓ𝑘 =

exp
{
Ψ(𝛾𝑠ℎ𝑎𝑝𝑒

ℓ𝑘
)
}

𝛾𝑟𝑡𝑒
ℓ𝑘

(25)

𝑞𝑣𝑘 =

exp
{
Ψ(_𝑠ℎ𝑎𝑝𝑒

𝑣𝑘
)
}

_𝑟𝑡𝑒
𝑣𝑘

(26)
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Appendix B. Causal interpretation of 𝛽

To see how the estimate in Eq. 15 is obtained, we flesh out how to use the substitute confounders
and an outcome model for the causal inference of Section 3.2. First define a conditional expectation,
similar to Eq. 3 but with substitute confounders,

`ℓ (𝑞, 𝑎ℓ , 𝑎∅) = 𝔼
[
𝑌 |𝑄 = 𝑞, 𝐴ℓ = 𝑎ℓ , 𝐴∅ = 𝑎∅ ,𝑈 = 𝑡ℓ

]
. (27)

Again, the expectation is over the joint distribution of the other team 𝑣 and which players (other
than ℓ and ∅) are on the field.

Next write it with an iterated expectation,

ˆ̀ℓ (𝑞, 𝑎ℓ , 𝑎∅) = 𝔼A−ℓ ,𝑉

[
𝔼

[
𝑌 |𝑄 = 𝑞, 𝐴ℓ = 𝑎ℓ , 𝐴∅ = 𝑎∅ ,𝑈 = 𝑡ℓ , 𝑉,A−ℓ

] ]
. (28)

Now we use the outcome model. Approximate the inner expectation with the fitted linear regression
of Eq. 11,

ˆ̀ℓ ( �̂�, 𝑎ℓ , 𝑎∅) ≈ 𝛽ℓ + 𝛾 · 𝑞𝑢𝑡ℓ + 𝔼A−ℓ ,𝑉
[
𝛽−ℓ · A−ℓ − 𝛾 · 𝑞𝑉

]
. (29)

Note, by definition, the 0-value player has 𝛽∅ = 0. Finally, plug this estimate into the identification
formula of Eq. 4 to obtain that Λℓ ≈ 𝛽ℓ .

Appendix C. Synthetic data generation

We generated synthetic data using a causal model with various degrees of confounding. We con-
sidered the soccer case, i.e. 11 players per lineup, and chose parameters such that the generated
outcomes resemble the observed ones from real datasets.
Data are generated in two steps. First we generate Gamma-distributed unobserved confounders 𝑧 as
in Section 3.3.1. We use the inferred values obtained fitting to real data. We do this to consider re-
alistic values. Then we generate synthetic lineups of 380 matches, as in a soccer league of 20 teams
and about 500 players. We sample each lineup using a distribution that depends on the unobserved
confounder as follows. We first consider the factor model distribution as in the main manuscript to
assign scores to each player and game:

𝔼
[
𝑎𝑖,ℓ

]
= \ℓ · 𝑞𝑣 if 𝑠ℓ = 𝑢𝑖 (30)

𝔼
[
𝑎𝑖,ℓ

]
= \ℓ · 𝑞𝑢 if 𝑠ℓ = 𝑣𝑖 (31)

𝔼
[
𝑎𝑖,ℓ

]
= 0 if 𝑠ℓ ≠ 𝑢𝑖 and 𝑠ℓ ≠ 𝑣𝑖 . (32)

Then we sample without replacement from a list of all eligible players a lineup of 22 players,
with sampling probabilities proportional to these scores.

We then build reconstructed causes using the unobserved confounder as in Section 3.3.1 and
then simulate outcomes for each match that are also dependent on the confounder using:

𝑦𝑖 ∼ N(𝛿𝑖 , 𝜎2)

𝛿𝑖 =

(
𝑚∑︁
ℓ=1

𝟙(𝑡ℓ = 𝑢𝑖) (𝑎𝑖,ℓ − 𝑎𝑈𝑖,ℓ)𝛽ℓ

)
−

(
𝑚∑︁
ℓ=1

𝟙(𝑡ℓ = 𝑣𝑖) (𝑎𝑖,ℓ − 𝑎𝑉𝑖,ℓ)𝛽ℓ

)
,

(33)
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where 𝜎 = 0.1. To make the outcome discrete, we round the real values to integer.
We consider various regimes of confounding by varying the ground truth 𝛽 and 𝛾. These are

both extracted from a Gaussian distribution but with different parameters. In addition, we select
one player per team who has an expected higher 𝛽 and call this set of overall 20 players as “Top
players”.

Specifically, the parameters are generated using:

𝛽ℓ ∼ N(0.0, 𝜎) if ℓ is not Top Player (34)

𝛽ℓ ∼ N(0.1, 𝜎𝑇𝑃) if ℓ is Top Player (35)

𝛾𝑘 ∼ N(0.0, 𝜎𝛾) . (36)

(37)

Here are the details of the different regimes:
Zero confounding: 𝜎 = 0.1, 𝜎𝑇𝑃 = 0.1, 𝜎𝛾 = 0.01.
Low confounding: 𝜎 = 0.2, 𝜎𝑇𝑃 = 0.2, 𝜎𝛾 = 0.2.
Medium confounding: 𝜎 = 0.2, 𝜎𝑇𝑃 = 0.2, 𝜎𝛾 = 0.5.
High confounding: 𝜎 = 0.1, 𝜎𝑇𝑃 = 0.1, 𝜎𝛾 = 0.5.
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Appendix D. Synthetic and real data extra results
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Figure 4: Synthetic data: ability to recover the ground-truth 𝛽. CAPM produces player rankings
more consistent with the ground truth rankings than the standard APM for various confounding
levels. We show the MSE between inferred and the ground truth 𝛽, here lower is better. Each
datapoint is the median with bars being the quartiles over 100 simulations.

Table 1: Basketball and soccer datasets used in the
empirical study. The number of players that play at least one
game varies across seasons and leagues, from 𝑀 = 417 for
the German Bundesliga to 𝑀 = 515 for the Italian Serie A
(similar numbers for the NBA). The number of NBA games
slightly varies depending on the season and playoffs. We
consider 3 seasons from 2014 to 2016 for the soccer dataset
and 5 seasons from 2014 to 2018 for the NBA dataset.

League Country 𝑁𝑡𝑒𝑎𝑚𝑠 𝑁𝑔𝑎𝑚𝑒𝑠

English Premier League England 20 380
Italian Serie A Italy 20 380
Spanish La Liga Spain 20 380
German Bundesliga Germany 18 306
NBA USA 30 ∼ 1300
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Table 2: CAPM vs APM model performance. In the table we compare the performance of the APM
model (MAE𝐴𝑃𝑀 ) and CAPM (MAE𝐶𝐴𝑃𝑀 ), and present the percentage of trials (over 100) where the
CAPM does better (lower values of the errors). In the columns MAE𝐴𝑃𝑀 and MAE𝐶𝐴𝑃𝑀 we report the
average MAE over 100 trials.

Sport League Season MAE𝐴𝑃𝑀 MAE𝐶𝐴𝑃𝑀 % MAE𝐴𝑃𝑀 >

MAE𝐶𝐴𝑃𝑀

Soccer

2014 1.36 1.31 0.86
English Premier League 2015 1.24 1.22 0.75

2016 1.25 1.25 0.44

2014 1.46 1.43 0.77
German Bundesliga 2015 1.26 1.27 0.36

2016 1.37 1.36 0.65
2014 1.26 1.21 0.95

Italian Serie A 2015 1.18 1.18 0.54
2016 1.22 1.2 0.81
2014 1.38 1.33 0.9

Spanish La Liga 2015 1.27 1.21 0.93
2016 1.38 1.32 0.9

Basketball

2014 2.284 2.274 0.79
2015 2.276 2.266 0.94

Eastern 2016 2.314 2.309 0.69
2017 2.373 2.361 0.9
2018 2.357 2.36 0.02

2014 2.312 2.3 0.95
2015 2.255 2.246 0.97

Western 2016 2.318 2.317 0.45
2017 2.323 2.318 0.78
2018 2.373 2.369 0.4
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Table 3: CAPM vs APM model performance, shifted test set. In the table we compare the MAE for the
predicted score difference of the CAPM compared to APM for a shifted test set where we hide the last 20%
of the matches in a season.

Sport League Season MAE𝐴𝑃𝑀 MAE𝐶𝐴𝑃𝑀

Soccer

2014 1.501 1.46
English Premier League 2015 1.369 1.39

2016 1.357 1.369

2014 1.343 1.309
German Bundesliga 2015 1.065 1.044

2016 1.384 1.37
2014 1.25 1.212

Italian Serie A 2015 1.279 1.269
2016 1.459 1.392
2014 1.302 1.282

Spanish La Liga 2015 1.344 1.28
2016 1.447 1.334

Basketball

2014 2.352 2.339
2015 2.353 2.344

NBA Eastern 2016 2.39 2.373
2017 2.403 2.39
2018 2.311 2.314

2014 2.336 2.328
2015 2.283 2.269

NBA Western 2016 2.332 2.335
2017 2.381 2.375
2018 2.342 2.349
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