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Modeling traffic distribution and extracting optimal flows in multilayer networks is of utmost
importance to design efficient multi-modal network infrastructures. Recent results based on optimal
transport theory provide powerful and computationally efficient methods to address this problem,
but they are mainly focused on modeling single-layer networks. Here we adapt these results to study
how optimal flows distribute on multilayer networks. We propose a model where optimal flows on
different layers contribute differently to the total cost to be minimized. This is done by means of a
parameter that varies with layers, which allows to flexibly tune the sensitivity to traffic congestion
of the various layers.
As an application, we consider transportation networks, where each layer is associated to a different
transportation system and show how the traffic distribution varies as we tune this parameter across
layers. We show an example of this result on the real 2-layer network of the city of Bordeaux with
bus and tram, where we find that in certain regimes the presence of the tram network significantly
unburdens the traffic on the road network. Our model paves the way to further analysis of optimal
flows and navigability strategies in real multilayer networks.

I. Introduction

Investigating how a network operates and assessing optimal network design in interconnected networks is a critical
problem in several areas [1]. Examples of these include economics [2], climate systems [3], epidemic spreading [4–6] and
transportation networks [7]. The main challenge of these problems is to account for the various types of connections
that nodes can use to travel through the network efficiently. For example, in transportation networks, the main
application considered here, passengers can travel using various means of transport within the same journey. The
different transportation modes can operate in significantly different ways [8, 9]. For instance, traveling along a rail
network (e.g. by tram or subway) is usually faster than along a road network (e.g. by car or bus). The rail network is
less sensitive to traffic congestion but the road network has wider coverage and thus allows to reach more destinations.
The question is how to combine all these different features to design optimal networks and predict optimal trajectories
of passengers.

Multilayer networks [1, 10–12] are a powerful tool to study multi-modal transportation networks [13–15]. Transport
in a multilayer network, where layers correspond to transport modes, has often been studied using diffusion or
spreading processes [1, 16–18]. Many of these works use shortest-path minimization [14, 19–21] as the main method
to extract the passengers’ trajectories. However, this can be a restrictive choice: on one side, this assumes that
different layers share the same cost function to be minimized; on the other side, shortest-path minimization is not
sensitive to traffic congestion and thus may not be realistic in certain scenarios. Empirical studies [22] have also
indicated that passengers may not necessarily choose shortest paths.

Here, instead we propose a model that considers a more general transport cost minimization, based on a regularized
version of the Monge-Kantorovich optimal transport problem [23]. The regularization is obtained via a parameter β
which allows to flexibly tune the cost between settings where traffic is penalized or consolidated. Optimal transport
has proven to be a powerful tool to model traffic in networks and optimal network design [24–39]. Recent works
[30, 40] have extend this formalism to a multi-commodity case that properly accounts for passengers with different
origin and destinations. All these studies consider the case of a single-layer network, i.e. one transportation mode.
The existence of multiple connections on different layers invites a generalization of these recent results of optimal
transport to cope with multilayer networks.

Here we make this effort and propose a model that uses optimal transport theory to design optimal multilayer
networks and that finds optimal path trajectories on them. We show how such networks operate under various
transport costs tuned by β on both synthetic and real data. We see how the traffic evolves from more homogeneous
to more unbalanced traffic distribution when a second layer is present and the cost to travel through it changes.
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What makes multilayer networks different than single-layer in transportation

Having given the broader context for our work, we now highlight the main features of transport on multilayer
networks. The presence of edges between layers (inter-layer edges) makes a multilayer network fundamentally distinct
from a standard single-layer one, as these edges allow passengers to switch between transportation modes. However,
this is not the only difference. In fact, in a multilayer network, the various layers have different characteristics. The
main one is that the type of transportation cost varies across layers. For example, the cost to build and maintain
the infrastructure differs depending on the transportation mode, with subway or rail tracks costing more than a road
network. Moreover, the cost assigned to traffic congestion is also different, as road networks are more sensitive to traffic
bottlenecks than rail ones. In addition, also the power dissipated differs depending on the means of transportation,
as running a tram generally produces less CO2 emissions than running a bus. All these different features impact the
results of an optimal transport problem, as the network features contributing to the cost function to be optimized
vary with layers, and thus also the optimal solution.
Finally, the network topologies themselves vary with layers [41], as a bus network has many edges with short lengths,
while a rail network tends to have fewer edges but longer. In addition, the weights assigned to each edge differ based
on the layer, which can induce a coupling between layers [42].

II. Materials and Methods

A. Multilayer transportation networks

In general, a multilayer network is represented as a graph G({Vα}α , {Eα}α , {Eαγ}α,γ), where Vα and Eα are the
set of nodes and edges in layer α, respectively, and Eαγ is the set of edges between nodes in layer α and nodes in
layer γ. Here α = 1, . . . , L and L is the number of layers. We denote with Nα = |Vα| the number of nodes in layer
α, and with Eα = |Eα| the number of edges in layer α, Eαγ = |Eαγ | is the number of edges between nodes in layer α
and γ. Finally, we denote with V0 = ∪αVα the total set of nodes, E0 = (∪αEα) ∪ (∪αγEαγ) the total set of edges, and
N0 = |V0| and E0 = |E0| their cardinalities. We assume that edges have lengths le > 0, which determine the cost to
travel through them.

Transportation networks are relevant examples of this type of structures, where nodes are stations, edges are
connections between stations and layers are transportation modes, for instance rails or bus routes. A convenient way
to represent multilayer network is with two tensors [43]: i) an intra-layer adjacency tensor A with entries Aαuv = 1
if there is an edge between nodes u and v in layer α, and 0 otherwise. We refer to this type of edges as intra-layer
edges; ii) an inter-layer adjacency tensor Â with entries Âαγuv = 1 if there is an edge between node u in layer α and
node v in layer β, and 0 otherwise. Without loss of generality, in our applications we have Âαγuv = 0 if u 6= v, meaning
that different layers are connected solely by shared nodes. We refer to edges connecting nodes in different layers as
inter-layer edges. In the case of transportation networks, the main application studied here, a station could have a
bus stop, a train platform and a subway entrance, which allows passengers to switch between communication modes
within the same station. For example, one can think of an inter-layer edge as the stairs connecting the subway entrance
with the entrance to the train station. Typically, inter-layer edges are thus much shorter than intra-layer edges.

In case of multilayer networks, we need to be careful on how stations connecting multiple transportation modes are
represented. In fact, if an entry station connects more than one layer, we may not be able to distinguish in what layer
a passenger enters. In other words, if a node u belongs to more than one layer, i.e. a node uα exists for more than
one value of α, we may not be able to tell whether the passengers entering u entered from uα, uγ or from any of the
other instances of node u in the various layers. To alleviate this problem, we build auxiliary super nodes u, which do
not belong to any layer in particular but instead connect the various instances of the same node in the various layers
together. Specifically, we remove all the inter-layer edges (uα, uγ) and replace them with auxiliary inter-super edges
(uα, u) connecting all the instances uα of node u with the super node u, as in a star graph, so that the original edge
(uα, uγ) has been replaced by a 2-edge path {(uα, u), (uγ , u)}.

This auxiliary structure allows the model to allocate in an optimal way passengers along the inter-super edges when
they enter from a station with connections to more than one layer, thus avoiding to select arbitrary entrances a priori.
This becomes relevant in applications where the cost to travel along inter-layer edges is non trivial. For instance, in
situations where changing connection impacts the comfort of the passengers.

Moreover, the introduction of super nodes and edges facilitates how we represent the multilayer network. In fact, by
adding these auxiliary super nodes and inter-super edges, we only need to consider an individual network adjacency
matrix A, instead of two separate tensors. This matrix has entries Auv = 1 if an edge exists between nodes u and
v and 0 otherwise, where a node u can be a node uα in layer α or a super node u. The set of nodes will then be
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FIG. 1: Example of multilayer structure. We show an example of a 2-layer network with N = 18 (N1 = 10, N2 = 4
and Nsuper = 4). (Left) adjacency matrix A, colors denote the layer type: blue is layer 1, red is layer 2 and green is
the super layer. (Right) the 2-layer network with layer 1 on the bottom, layer 2 on top, and the super nodes in
between.

V = V0 ∪ Vsuper, where Vsuper is the set of super nodes, and |Vsuper| = Nsuper is their number, which corresponds
to the number of nodes that belong to more than one layer. Similarly, the new set of edges is E = (∪αEα) ∪ Esuper
where Esuper is the set of inter-super edges. The final numbers of nodes and edges are N = |V| = N0 + Nsuper and
E = |E| ≥ E0. Notice that this construction is equivalent to assume that the network has L + 1 layers, where the
extra layer is made of inter-super edges Esuper and all nodes incident to them (without loss of generality, we assume
that all the inter-super edges are treated equally). We denote it as super layer and this corresponds to α = L+ 1, so
that EL+1 ≡ Esuper. We show an example of this structure in Figure 1.

Finally, we consider a coupling between layers as in [42] that controls how the layers are linked. Specifically, we
multiply the lengths of each edge by a factor wα ∈ [0, 1] that depends on what layer the edge belongs to. For
convenience, we introduce qe ≡ qe(α) taking values qe = α, for each e ∈ Eα and with α = 1, . . . , L+ 1. Using this, we
define the resulting length as `e := wqe le. This ensures that edges in different layers can be navigated differently. If
we interpret wα as the inverse of a velocity, then `e is proportional to the time needed to travel along edge e, which
can be seen as an “effective” length. When wα < 1 and wγ = 1, a passenger takes less time to travel along an edge
of length le in α than one in γ. Typically, `e are small for inter-super edges. Nevertheless, one can tune the cost to
travel along them by tuning wL+1.

B. The model

We consider the formalism of optimal transport theory, and in particular recent works that maps the setting of
solving a standard optimization problem into that of solving a dynamical system of equations [24–30, 40]. Specifically,
we model two main quantities defined on network edges: i) fluxes Fe of passengers traveling through an edge e; ii)
conductivities µe, these are quantities determining the flux passing through an edge e. Intuitively, the conductivity µe
of an edge can be seen as proportional to the size of the edge e. To keep track of the different routes that passengers
have, we consider a multi-commodity formalism as in [40], i.e. we distinguish passengers based on their entry station
a ∈ S, where S ⊆ V is the set of stations where passengers enter, we denote with M = |S| the number of passenger
types. With this formalism, we have that the fluxes Fe are M -dimensional vectors, where the entries F ae denote an
amount of passengers of type a traveling on edge e. The important modeling choice is that the conductivities µe are
shared between passengers, thus they are scalar numbers contributing to the cost for all passengers’ types traveling
trough e. This formalism can be equally applied to both edge types, intra-layer and inter-super edges.
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We assume that fluxes are determined by pressure potentials pau defined on nodes as:

F ae :=
µe
`e

(pau − pav) , e = (u, v) . (1)

We model the amount of passengers entering a station a with a positive real number ga. For notational convenience,
we define a N ×M dimensional matrix of entries gau such that gau := 0 if u 6= a, and gau := ga if u = a. Similarly, we
define with hau the amount of passengers of type a exiting at node u. Here the only constraint is that hau = 0 if u = a,
to avoid unrealistic situations were passengers entering in one station exit from the same station. Finally, we define
the N ×M -dimensional source matrix with entries Sau = gau − hau, which indicates the amount of passengers of type a
entering or exiting a station. Notice that for each a ∈ S we have

∑
u S

a
u = 0, meaning the system is isolated, i.e. all

the passengers of a certain type who enter the network also exit.
With this in mind, we enforce mass conservation by imposing Kirchhoff’s law on nodes. To properly enforce this

constraint we need to consider all the edges, both intra-layer and inter-layer edges. This can be compactly written by
considering the multilayer network signed incidence matrix B with entries Bve = 1,−1, 0 if node v ∈ V is the start,
end of edge e ∈ E , or none of them, respectively. With this in mind, Kirchhoff’s law can be written as:∑

e

BveF
a
e = Sav , ∀a ∈ S,∀v ∈ V . (2)

Finally, we assume that the conductivities follow the dynamics:

µ̇e = µ
βqe
e

∑
a∈S(pau − pav)2

`2e
− µe, ∀e ∈ E , (3)

where qe encodes the type of edge, as defined in Section IIA. The parameter 0 < βqe < 2 is important as it determines
the type of optimal transport problem that we aim to solve, as we describe in more detail later. Interpreting the
conductivities as quantities proportional to the size of an edge, this dynamics enforces a feedback mechanism such
that the edge size increases if the flux trough that edge increases, it decreases otherwise. This feedback mechanism
has been observed in biological networks like the one made by the slime mold Physarum polycephalum [24, 44], which
adapts its body shape to optimally navigate the space searching for food.

The important property of this dynamics is that its stationary solutions minimize a multilayer transport cost
function:

Jβ =

L+1∑
α=1

∑
e∈Eα

`e||Fe||Γ (βα)
2 , (4)

where Γ (βα) = 2 (2− βα) / (3− βα) for all α and the 2-norm is calculated over the M entries of each Fe. This means
that solving the systems of Eqs. (1) to (3) is equivalent to finding the optimal trajectories of passengers in a multilayer
network, where optimality is given with respect to the cost in Eq. (4). An extended discussion and a formal derivation
of this property can be found in [32, 40].

The parameter βqe (taking value βα on layer α) regulates how the fluxes should distributes in each of the layers.
In fact, according to Eq. (4), when βα > 1, the fluxes are encouraged to consolidate into few edges of layer α, being
Γ (βα) < 1 and thus the cost in Eq. (4) sub-linear. In the opposite scenario, when 0 < βα < 1, we have that the fluxes
are encouraged to distribute over more edges and with lower values, in order to keep traffic congestion low. Finally,
when βα = 1 we obtain shortest path-like minimization. The consequence of having different βα in different layers is
that the optimal trajectories will have different topologies in each of the layers. At the same times, layers are coupled
together, thus the final trajectories will be a complex combination of the weights wα and the βα. We give an example
of optimal flows for various combinations of these parameters in Figure 2.
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FIG. 2: Example of optimal paths. We show an example of optimal paths obtained with: p = 0.2 and (top)
w1 = 0.2, (bottom) w1 = 0.8. Values of β1, β2 are those reported on top of each network. The statistics Gini1 and
f2 are those defined in Section IIIA. The width of edges is proportional to the optimal ||Fe||2. Blue and red edges
are for layer 1 and 2, respectively. The two layers are plotted individually on the rightmost column.

C. The algorithmic implementation

The numerical implementation consists in initializing the µe > 0 at random. Then one iterates between i) extracting
the pressure potentials (or the fluxes) using Eqs. (1) and (2); ii) use these to recompute the µe by means of Eq. (3),
this can be solved numerically with a finite difference discretization. The iteration is repeated until convergence.
In our experiments, we terminate a run of the algorithm when the difference J (t+1)

β − J (t)
β between two successive

updates is lower than a threshold (the superscript (t) is the iteration step). The cost Jβ in Eq. (4) is not strictly
convex in general, hence the solution of Algorithm 1 may converge to a local optima. One should then run the
algorithm several times, each time initializing to a different random initial realization of µe > 0. A possible choice
for a final optimal solution would be the one that has lower Jβ . We give the pseudocode for this in Algorithm 1.
Most of the computational effort required by Algorithm 1 is in the solution of M linear systems as in Eq. (2). In our
implementation, this has been performed by a sparse direct solver (UMFPACK), performing a LU decomposition of
each column of the right hand side of Eq. (2), and having complexity scaling as O(M N2).

Algorithm 1 Multilayer Optimal Transport

1: Input: multilayer network G(V, E), source matrix S, βα
2: Initialize: {µe} (e.g. sampling as i.i.d. µe ∼ Unif(0, 1))
3: while convergence not achieved do
4: use Eq. (1) to solve Kirchhoff’s law as in Eq. (2) → {pau}
5: solve the dynamics in Eq. (3): {µte} → {µt+1

e }
6: end while
7: Return: fluxes {Fe} at convergence, computed using Eq. (1)

The resulting {Fe} capture how passengers travel along the network via optimal trajectories. The norms ||Fe||2
measure the total amount of passengers along an edge e.



6

III. Results

A. Results on synthetic data

We show how the model works on synthetic data where each layer is planar, to mimic realistic scenarios of trans-
portation networks in space. We generate 2-layer networks and the source matrix S as done in [42]. Specifically, we
generate one layer by randomly placing N nodes in the square [0, 1] × [0, 1] and then extract their Delaunay trian-
gulation [45]. We then select a subset of nodes and use this to build the second layer, with an analogous procedure.
An example of this is given in Figure 2. After having constructed the network topology, we assign entry and exit
stations to each node in the network starting from a monocentric scenario where all passengers exit from a central
station, regardless their origin. We then randomly re-assign with a probability p ∈ [0, 1] the exit station of each set
of passengers. When p = 0 all the passengers travel to the city center, while when p = 1 the destinations are assigned
completely at random.
We generate 20 networks with N1 = 100 and N2 = 10, so that layer 1 has on average shorter edges than layer 2. For
each sampled network we take 50 random samples of S. We consider p ∈ {0.2, 0.8} to study two opposite situations
of having a majority or a minority of the passengers directed to a common central node. Then, we fix w1 = 1 and
vary w2 ∈ {0.2, 0.8}, to mimic a scenario where traveling on the second layer is faster.
Overall, with these combinations of parameters, we obtain 2-layer networks that resemble a road-rail network.
With this in mind, we run our model with the following combination of parameters for the dynamics: (β1, β2) ∈
{(0.5, 1.1), (0.5, 1.3), (0.5, 1.5), (1., 1.)}. This is because we expect to penalize traffic congestion in a road network,
hence β1 = 0.5. Instead, a rail network is less sensitive to traffic but it may cost more to build connections, thus
once should consolidate traffic along fewer edges, hence β2 > 1. The case (β1, β2) = (1., 1.) is used as a baseline for
comparison with shortest path-like optimization.

We measure how passengers distribute along the optimal trajectories to assess how the network operates under
various regimes of w and β. For this, we consider ||Fe||2 and measure the distribution of this quantity along the edges,
to see how this varies across parameters’ values and in each of the two layers. In addition, we calculate the current
flow edge betweenness centrality (FBC) [46], which captures how important an edge is based on how many passengers
travel through it. This is different than the standard edge betweenness centrality [47] in that it considers random
paths connecting two points, instead of only the shortest paths. We argue that FBC is more appropriate in our case
as the shortest paths may not be the optimal trajectories where passengers travel. We calculate the weighted version
of FBC, where the edge weigth is ||Fe||2, so that the random paths are more likely to follow edges with higher flux.
We use the Gini coefficient Gini ∈ [0, 1] to characterize the disparity in the flow assignment along edges. We consider
the following definition [48]:

Gini :=
1

2E2x̄

∑
r,q

|xr − xq| , (5)

where r, q denote edges, x is the quantity we want to measure this coefficient with and x̄ =
∑
e xe/E is its average

value. Here we use xe = ||Fe||2 and xe = FBCe. When Gini is close to one, most of the flow passes through few
edges. Instead, when Gini is small, the flows are distributed evenly across edges.

Looking at Figure 3, we see that Gini increases with β2 and thus the network usage becomes more hierarchical,
as expected in this case (we report here results for Gini w.r.t. the flux, but similar results are observed for FBC,
see Figure S1). The exact value of Gini depends on the travel demand, as for p = 0.2, i.e. when the central node
is a destination in 80% of the journeys, Gini is higher than when p = 0.8. This is because with fewer destinations
there are also fewer possible path trajectories, and thus more passengers use the same part of the network. We can
also see how Gini decreases for higher w2, i.e. when traveling by tram is not much faster than traveling on the road
network. Finally, we can notice the drop in Gini compared to the shortest path-like scenario β1 = β2 = 1. In this
case, the traffic distribution is the most hierarchical, suggesting that possible traffic congestions can be avoided by
setting lower values of β1.
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FIG. 3: Results on synthetic data. We show the Gini w.r.t. the optimal ||Fe||2 (y axis) vs β2 (x axis) for synthetic
2-layer networks generated as in Section IIIA. Blue and red markers denote p = 0.2, 0.8, respectively, w1 = 1 in all
cases, while w2 = 0.2 (left) and w2 = 0.8 (right); β1 = 0.5 in all cases, except for the case where β2 = 1, for which
β1 = 1. This case is a shortest path-like baseline. Markers are averages over 20 network samples and 50 source
matrix samples (for a total of 1000 individual samples).

Our model can be used to simulate traffic distributions under various conditions. In fact, tuning p, {wα} and {βα},
one can simulate disparate scenarios. For instance, in Figure 2 we show results for different parameters’ choices on a
particular realization of a 2-layer synthetic network. Several conclusions can be drawn from this simple experiment.
For instance, the second layer, which ideally can represent a tram network, is only partially used when β2 = 1.5.
This value encourages traffic to consolidate on fewer main connections, simulating the scenario where building the
rail infrastructure is expensive. Our model can guide a network manager to decide what edges should be prioritized
when designing the network. In this example, we can distinguish what set of edges are the most utilized. These are
mainly central edges, but the exact set can change depending on the other parameters. For example, if the travel
demand, tuned by p, switch from a monocentric to a more heterogenous set of entry-exit stations, one of the main
central edges changes from connecting a periphery to the center, to connecting two locations in the periphery.

B. Results on real data

We illustrate our model on a real 2-layer network of the city of Bordeaux, where the two layers are the bus and
tram, respectively. Data are taken from [49]. We simulated a monocentric source matrix S, i.e. p = 0.0, to asses
the scenario where all the passengers travel to the city center, however results are similar for other values of p (not
reported here). Optimal paths are extracted using our model for β1 = 0.5, β2 = 1.5, w2 = 0.2 and compared against
the case where the tram network is absent. This can be simulated by setting a high value of w2, so that the cost on
the tram edges makes it extremely unlikely to use any tram connection (here we used w2 = 100). We measure the
total percentage flux f2 =

∑
e∈E2 ||Fe||2/(

∑
e∈E1 ||Fe||1 +

∑
e∈E2 ||Fe||2) passing through layer 2. Remarkably, in this

scenario the tram network absorbs f2 = 17% of the total flow of passengers, even though the tram network contains
only E2 = 112 edges, compared to E1 = 2347 bus edges. This allows to reduce significantly the traffic along the road
network, as can be seen in Figure 4: the road edges, and in particular those parallel to the tram line and close to
the city center, get thinner, as more passengers use the tram. This also results in a higher Gini1 = 0.26 (calculated
on edges in layer 1 w.r.t. ||Fe||2), compared to the Gini1 = 0.23 when the tram is absent: as the passengers use the
tram, they decrease traffic on many road edges. While the traffic distribution on layer 1 gets more hierarchical (higher
Gini1), this does not necessarily lead to more traffic congestion. In fact, the total percentage flow f1 decreases, as we
saw above. Additional plots can be seen in Figure S2.
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FIG. 4: Example of optimal paths in the city of Bordeaux for a bus and tram network. The paths are obtained with
(left) and without (right) the tram layer. Here β1 = 0.5 in both cases, while β2 = 1.5 in the second case. The width
of the edges is proportional to the optimal ||Fe||2. The reported Gini1 coefficient for the bus network (layer 1) is
calculated using ||Fe||2. The total percentage flux f2 =

∑
e∈E2 ||Fe||2/(

∑
e∈E1 ||Fe||1 +

∑
e∈E2 ||Fe||2) = 0.17,

distributed over E2 = 112 tram edges, compared to E1 = 2347 bus edges.

IV. Discussion

We have presented a model that extracts optimal flows on multilayer networks based on optimal transport theory.
Our models accounts for different contributions from different layers to the total transport cost by means of a parameter
βα. Our modeling choice is relevant in scenarios where passengers can travel using different transport modalities on an
interconnected transportation network. We have shown how the optimal distribution of passenger flows on network
edges is influenced by different factors. In fact, a complex combination of the parameter βα on each layer, the
coupling between layers and the distribution of the origin and destination pairs determine how heterogeneous the flow
distributions is inside the various layers. In particular, when βα < 1 in one layer and βα > 1 in another layer, the
network topologies are significantly different in the two layers, as in one the traffic is more balanced and distributed
along many edges, while in the other traffic is consolidated along few main arteries. To show the potential of our
model, we have considered an application to the 2-layer bus and tram network of Bordeaux, showing how the presence
of the tram changes the traffic distribution on the road network.

In this work, in the absence of real data, we simulated the entry and exit destination of passengers. However, if
travel demands were known, for instance using mobile data [50], it would be interesting to investigate the distribution
of traffic obtained with our model and compare it with real usage data as done in [51]. We have considered a cost
assigned on edges where βα tunes the impact of traffic on them, but one can generalize this to include penalties on
nodes based on their degrees, as considered in [52]. Our model can be used to extract the main features of multilayer
transportation networks [53] or to study the existence of several congestion regimes in both synthetic and real data
[21] and investigate how these changes varying βα. Finally, in our experiments we fixed the weight of inter-super
nodes to be small. Potentially, one could suitably increase this to account for the cost of changing transportation
mode within a journey and use our model to see how optimal trajectories change. This would be relevant in scenarios
where passengers’ comfort contributes to the total transport cost. To facilitate future analysis, we provide an open
source implementation of our code at https://github.com/cdebacco/MultiOT.
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Supporting Information (SI)

FIG. S1: Additional results on synthetic data. We show the Gini w.r.t. the optimal FBC (top) and the total
percentage flux f2 on layer 2 (bottom) vs β2 (x axis), for synthetic 2-layer networks generated as in Section IIIA;
w2 = 0.2, 0.8 (left,right), β1 = 0.5 in all cases, except for the case where β2 = 1, for which β1 = 1. This cases is a
shortest path-like baseline. Markers are averages over 20 network samples and 50 source matrix samples.
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FIG. S2: Additional example of optimal paths in the city of Bordeaux for a bus and tram network. Here p = 0.0,
w2 = 0.2, β1, β2 = (0.5, 1.1), (1.0, 1.0) (left and right). The width of the edges is proportional to the optimal ||Fe||2.
Gini1 is calculated w.r.t. to the flux on layer 1; f2 =

∑
e∈E2 ||Fe||2/(

∑
e∈E1 ||Fe||1 +

∑
e∈E2 ||Fe||2).
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