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Finding optimal trajectories for multiple traffic demands in a congested network is a challenging
task. Optimal transport theory is a principled approach that has been used successfully to study
various transportation problems. Its usage is limited by the lack of principled and flexible ways
to incorporate realistic constraints. We propose a principled physics-based approach to impose
constraints flexibly in such optimal transport problems. Constraints are included in mirror descent
dynamics using the principle of D’Alembert-Lagrange from classical mechanics. This leads to a
sparse, local and linear approximation of the feasible set leading in many cases to closed-form
updates.

INTRODUCTION

Optimal transport in networks has important applica-
tions in different disciplines, in particular in urban trans-
portation networks [1]. Congestion not only increases
travel time for users and decreases productivity, but it
also drives air pollution. Reducing congestion and mak-
ing transportation more efficient are also a core objective
for EU policies, as highlighted throughout the EU Trans-
port White Paper and the Strategic Plan 2020-2024 [2, 3].

The design of efficient transportation networks is a
complex task that requires a multifaceted solution. One
of these facets is the problem of finding optimal routes for
passengers. This is a well-studied problem and a variety
of approaches have been suggested, such as shortest-path
minimization [4, 5] and assignment strategies [6]. Other
approaches that are based on adaptation dynamics [7–9]
have also been proposed to model biological distribution
networks.

However, these approaches fall short on describing re-
alistic scenarios where transport flows are limited by con-
straints, requiring a more general theory of optimal trans-
port (OT). OT has been used to model and optimize var-
ious aspects of transport networks such as network de-
sign [7, 9–11] and traffic flows [12–16]. These approaches
guarantee a principled and computationally efficient way
of solving transportation problems on networks. In
standard OT methods, beyond few obvious constraints
(e.g. conservation of mass), the amount of flow passing
through an edge of the transportation network is uncon-
strained. As a result, traffic tends to concentrate on path
trajectories that may be structurally unfeasible, which
severely limits the applicability of OT models in real-
world situations, where, for example, roads have a lim-
ited capacity of vehicles traveling at the same time. This
letter proposes an approach to avoid this crucial flaw of
OT models by imposing constraints. Applying this ap-
proach significantly impacts the overall network topology
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induced by the optimal flows, as the resulting path trajec-
tories have different path lengths and traffic distribution
than those obtained from unconstrained scenarios.
Our approach has not only a solid foundation via the

principle of D’Alembert-Lagrange from classical mechan-
ics [17], but also leads to algorithms that are computa-
tionally efficient and have a low implementation complex-
ity. The key idea is to consider mirror descent dynamics
of an OT problem, where constraints are included on a
velocity level. This leads to a sparse, local and linear
approximation of the feasible set which, in many cases,
allows for a closed-form update rule, even in situations
where the feasible set is nonconvex.
The model. In analogy with electrical grids or hy-

draulic networks, we model mass flow on a transportation
network using conductivities and flows on network edges.
We consider a multi-commodity scenario [13, 18], where
mass of different type i = 1, . . . ,M can move along differ-
ent trajectories. The flow F i

e of mass of type i along an
edge e = (u, v) can be described by F i

e = µe(p
i
u − p

i
v)/ℓe,

where piu is a pressure potential at node u for passenger
of type i, ℓe is the length of the edge e and µe its conduc-
tivity. This latter quantity can be seen as proportional
to the size of an edge, and is the main variable of inter-
est in determining optimal trajectories. In the absence of
constraints, the optimal conductivities are the stationary
solutions of the dynamics µ̇ = f , where

fe = µ
β
e
∑i(p

i
u − p

i
v)

2

ℓ2e
− µe ≡ µ

β−2
e ∣Fe∣

2
− µe , (1)

with Fe = (F
1
e , . . . , F

M
e ) and ∣ ⋅ ∣ denotes the Euclidean

norm. Intuitively, this equation describes a positive feed-
back mechanism where conductivities increase for larger
fluxes and decrease for negligible ones. It can be shown
that the dynamics in Eq. (1) admits a Lyapunov function
Lβ which can be interpreted as a combination of the cost
to operate the network and that of building the infras-
tructure [13]. Moreover, we have that f = −S∇Lβ , where
S is a diagonal matrix with diagonal entries Se = 2µ

β
e /ℓe

and Eq. (1) can therefore be seen as a mirror descent for
the cost function Lβ [19]. This scaling in S has the advan-
tage of ensuring good behavior of the resulting numerical
methods. One can also reinterpret Eq. (1) as a classical
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gradient descent by applying a suitable transformation
[20], we do not explore this here.

Variants of these dynamics have been proposed to
model distributions over networks [8, 9, 14, 21, 22]. The
constant β ∈ (0,2) regulates the desired transportation
regime. The setting β < 1 penalizes traffic congestion by
distributing paths on more edges, β > 1 encourages path
consolidation into fewer highways, and β = 1 is shortest
path-like.

In addition to imposing Kirchhoff’s law on nodes to en-
sure mass conservation, solving these dynamics outputs
otherwise unconstrained optimal µe and Fe. While this
may be enough in ideal cases, in more realistic scenar-
ios it is important to further constrain the solution. For
instance, structural constraints may limit the maximum
amount of flow that an edge can carry, or a budget con-
straint may be used to limit the infrastructure cost for
building the network. Hence, the dynamics µ̇ = f must
be altered to account for these additional constraints.
There are many ways in which constraints can be added.
A popular approach is to add constraints on a so-called
position level, which leads to gradient inclusions in con-
tinuous time [23, Ch 3.4], and projected gradient descent
in discrete time. Unfortunately, the scope of projected
gradients is limited, due to the fact that projections can
only be efficiently evaluated for constraints that have a
particular structure (such as a low-dimensional hyper-
plane, the probability simplex, or a Euclidean norm ball).
When the feasible set is nonconvex and/or fails to have
a simple structure, evaluating projections is a computa-
tionally daunting task. This motivates our formulation
(see also [24]), which includes constraints on a velocity
level and yields a sparse local and linear approximation of
the feasible set. As a consequence, the updates for µ can
often still be evaluated in closed-form (or there is an ef-
ficient way of computing them numerically) even though
the underlying feasible set is nonconvex or fails to have a
simple structure. We will highlight explicit examples of
such situations in the remainder of this letter.

We define C ∶= {µ ∈ RE
≥0 ∣ g(µ) ≥ 0} as the set of feasible

conductivities µ = (µ1, . . . , µE), with g a constraint func-
tion that we assume continuously differentiable and E is
the number of network edges. We focus on those edges
where constraints are not satisfied, and denote the set of
active constraints for a given µ as Iµ ∶= {i ∈ Z ∣ gi(µ) ≤ 0}.
Interpreting µ as a “position” variable, a constraint to
ensure µ(t) ∈ C,∀t ≥ 0, can be equivalently formulated
as a constraint on its velocity µ̇(t) ∈ TC(µ(t)),∀t ≥ 0,
with µ(0) ∈ C, where TC(µ) denotes the tangent cone
of the feasible set at µ, see [25]. However, it will be
convenient to slightly extend the notion of tangent cone
to also account for infeasible initial conditions (this is
particularly important for the discretization), which is
achieved by imposing µ̇(t) ∈ Vα(µ(t)), where Vα(µ) ∶=
{v ∈ RE ∣ ∇gi(µ)

T v ≥ −αgi(µ), i ∈ Iµ}, and α ≥ 0 is a
constant typically referred to as a “restitution” parame-
ter or “slackness”.

FIG. 1. (A) Visualization of the set C and the set of feasible
velocities Vα(µ1) and Vα(µ2) at points µ1 and µ2, respec-
tively. Point µ1 lies on the boundary of C, while µ2 is infeasi-
ble; α is a restitution parameter. (B) When the vector field f
is pushing away from C, a force −R ∈ NVα(µ̇) is added to the
dynamics. The force R annihilates the component of f that
would lead to a constraint violation and ensures µ̇ ∈ Vα(µ).

We note that Vα(µ) generalizes the notion of the tan-
gent cone, since for µ ∈ C, Vα(µ) = TC(µ).[26] For
µ(t) /∈ C the constraint µ̇(t) ∈ Vα(µ(t)) is equivalent to
dgi(µ(t))/dt ≥ −αgi(µ(t)), i ∈ Iµ(t), which ensures that
potential constraint violations decay at the rate α > 0.
The situation is visualized graphically in Fig. 1 (panel
A).
In order to account for the velocity constraint µ̇ ∈

Vα(µ) we augment the dynamics µ̇ = f with a constraint
reaction force R, that is,

µ̇ = f +R, with −R ∈ NVα(µ)(µ̇), (2)

where NVα(µ)(µ̇) denotes the normal cone of the set
Vα(µ) at µ̇. Due to the scaling of the gradient with
S, the normal cone is defined with respect to the inner
product ⟨a, b⟩ = aTS−1b, where a, b ∈ RE are arbitrary
vectors. This has the important effect of guaranteeing
that Lβ (of the unconstrained dynamics) is still a Lya-
punov function also in the constrained setting and that
Lβ(µ(t)) is monotonically decreasing along the trajec-
tories of Eq. (2). A detailed derivation is included in
Supporting Material [27].
The addition of R ensures that even if f pushes µ away

from C, as shown in Fig. 1 (panel B), the force R, which
is orthogonal to the set Vα(µ), annihilates the component
of f that would lead to a constraint violation and ensures
that µ̇ ∈ Vα(µ). As discussed above, we can therefore
conclude that µ(0) ∈ C ⇒ µ(t) ∈ C for all t ≥ 0 and
µ(0) /∈ C ⇒ µ(t) → C for t→∞.
In addition, we infer from Fig. 1 that the resulting µ̇

in Eq. (2) is nothing but the projection of f onto the set
Vα(µ) and as a result, we can rewrite µ̇ in the following
way:

µ̇ ∶= argmin
v∈Vα(µ)

1

2
⟨v − f, v − f⟩ , (3)

which can also be equivalently reformulated as the
quadratic program

µ̇ ∶= argmin
v∈Vα(µ)

1

2
(v − f)TS−1(v − f) . (4)
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This reformulation is not only useful for numerical
computations, but also highlights that the velocity µ̇ is
chosen, at each point in time, to match the unconstrained
f . Fig. 1(A) visualizes the set C and the set of feasible
velocities Vα(µ1) and Vα(µ2) at points µ1 and µ2, re-
spectively. Point µ1 lies on the boundary of C, while µ2

is infeasible. We note that the cone Vα(µ2) includes an
offset, which is controlled by the restitution parameter
α; this ensures that any v ∈ Vα(µ2) leads to a decrease in
constraint violation. Fig. 1 (B) shows that when the vec-
tor field f is pushing away from C, a force −R ∈ NVα(µ̇) is
added to the dynamics. The force R annihilates the com-
ponent of f that would lead to a constraint violation and
ensures µ̇ ∈ Vα(µ), where µ̇ is chosen as close as possible
to f . This can also be interpreted as Gauss’s principle
of least constraint. It is important to note that Vα(µ) is
a polyhedral set that only includes the constraints Iµ, a
subset of the original constraints g(µ) ≥ 0. The set Vα(µ)
represents therefore a sparse, local and linear approxima-
tion of the feasible set. The solution µ̇ of Eq. (3) can then
be used to update the conductivity with a discrete-time
algorithm:

µt+1
= µt
+ τ µ̇ , (5)

where τ > 0 is the step size.
This general formalism can be applied to a variety of sce-
narios, provided one can compute ∇g, which determines
the set Vα(µ). We now describe three concrete and rele-
vant examples.

Capacity constraints. In cases of structural con-
straints that strictly limit the amount of mass that can
travel along any given edge, one can consider capacities
ce ≥ 0 on edges and set constraints as ge(µ) = ce − µe.
The velocity constraint v ∈ Vα(µ) in Eq. (3) reads as
ve ≤ αge(µe), for e ∈ Iµ, which is strictly negative, since
α > 0 (Supporting Material [27]). As previously dis-
cussed, α > 0 is a restitution parameter that dictates
the rate at which constraint violations decay. In discrete
time, one should choose α > 0 such that ατ ≤ 1 to guar-
antee convergence (see [24]). We can then solve Eq. (3)
in closed-form for edges violating the constraint obtain-
ing ve =min{α (ce − µe), fe}. In summary, for each edge
e, we have:

µ̇e =

⎧⎪⎪
⎨
⎪⎪⎩

α (ce − µe), if fe ≥ α (ce − µe) and µe ≥ ce,

fe otherwise .
(6)

We illustrate the topologies of the paths resulting from
considering the capacity constraint on synthetic data and
compare against those obtained in the unconstrained case
in Fig. 2. We measure the Gini coefficient Gini(T ) calcu-
lated on the traffic on edges, defined as the E-dimensional
vector T with entries Te = ∑i ∣F

i
e ∣/n, where n is the num-

ber of passengers. The coefficient has value in [0,1] and
it determines how traffic is distributed along network
edges, with Gini(T ) = 0 meaning equally-balanced dis-
tribution and Gini(T ) = 1 indicating highly unbalanced

FIG. 2. Capacity constraint on synthetic networks. (A)
Gini coefficient of the traffic distribution on edges. The
edge capacity ce = c is selected as a percentile of the dis-
tribution of µ over edges obtained in the unconstrained case
(Unconstrained). (B) Ratio of average total path length to
that of Unconstrained, ⟨l⟩f . Markers and shadows are av-
erages and standard deviations over 20 network realizations,
with 100 randomly selected origins. All passengers have the
same central destination (square magenta marker). (c) Ex-
ample trajectory of one passenger type (green color), whose
origin is the green triangle marker. Edge widths are propor-
tional to the amount of passengers traveling through an edge;
β = 1.8.

traffic on few edges. The choice of the edge capacity ce
influences this value, with lower ce imposing stricter con-
straint and thus encouraging traffic to distribute more
equally along the edge, i.e. lower Gini, as shown in
Fig. 2(A). Conversely, this implies longer routes for pas-
sengers, as measured by an increasing average total path
length ⟨l⟩ = ∑e,i ℓe ∣F

i
e ∣/n compared to the unconstrained

solution, as shown in Fig. 2(B).

Budget constraint. As a second example, we consider
a global constraint that involves all the edges at once,
a budget constraint gb(µ) = b − ∑e µe. This is relevant
when a network manager has a fixed limited amount of
resources b > 0 to invest. We note that, while the Lya-
punov function Lβ contains a similar budget term–the
cost to build the infrastracture–this cost is not regarded
as a constraint in standard approaches [8, 13] but as part
of the energy consumption, and the budget b is not a
Lagrange multiplier but a measurable constant. Further-
more, unlike the previous case where including a positiv-
ity constraint µe ≥ 0 is optional (but it can in principle
be imposed as well, see Supporting Material [27]), here
we need to include that explicitly. In the standard OT
formalism positivity is ensured, provided µe is initialized
as a positive quantity. Adding constraint may not pre-
serve positivity anymore during the updates, this is the
case for the budget constraint, as we observed empiri-
cally. Positivity is enforced by adding gp(µ) = µ ≥ 0, i.e.
µe ≥ 0∀e.

In this budget constraint setting, the conductivities vi-
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olate the constraint whenever ∑e µe > b. We derive a
closed-form solution as: µ̇e = fe − Seλb, if fe − Seλb ≥

−αµe, and µ̇e = −αµe otherwise, where λb ∈ R is a La-
grange multiplier for the budget constraint and can be
determined numerically using fixed-point iteration; see
Supporting Material [27].

Combining linear and non-linear constraints. All the
previous examples considered linear constraints, where it
is simple to derive analytical solutions. In general, con-
straints can be more complicated and thus require numer-
ical methods to solve the constrained quadratic optimiza-
tion in Eq. (3). In this scenario, we consider a non-linear
budget constraint of the form: gδ(µ) = b − ∑e µ

δ
e ≥ 0,

where δ > 0 is a nonlinearity parameter. Setting δ = 1
gives a linear budget constraint as the one discussed ear-
lier. A non-linear example is a volume-preserving con-
straint where δ = 1/2, this is relevant for biological pro-
cesses such as leaf venation and vascular systems [9, 28].
This non-linear budget induces the velocity constraint

∑e δµ
δ−1
e ve ≤ αgδ(µ). In addition, we also consider a ca-

pacity constraint as in the first scenario studied above.
Overall, three functions are required: i) gδ(µ) to impose
non-linear budget constraint; ii) ge(µ) to impose edge
capacity and iii) gp(µ) to ensure positivity. Also in this
non-linear constraint example, we can derive closed-form
solution as

µ̇e =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

α (ce − µe) if fe−Seλδ he ≥ α (ce − µe), µe ≥ ce

−αµe if fe−Seλδ he ≤ −αµe, µe ≤ 0

fe − Seλδ he otherwise ,

(7)
where he = δ µδ−1

e and λδ > 0. The value of λδ can be
determined numerically using fixed-point iteration (Sup-
porting Material [27]). In this analytical solution, the
value α (ce − µe) ensures there is no violation on the
edge capacity, −αµe imposes positivity constraint and
fe−Seλ

δhe captures budget violation. Overall, this sce-
nario ensures that the velocity µ̇e has an upper bound of
α (ce−µe) and lower bound of −αµe. The choice of δ im-
pacts the topological properties of the resulting network,
e.g., the total path length. In the numerical experiments,
we set the nonlinearity parameter as δ ∈ (0,1).
General scenarios: quadratic programming. The

three examples illustrate cases where one can derive an-
alytical or semi-analytical updates. Our method is valid
more generally, for any choice of the constraints g(µ) pro-
vided its gradient can be derived. In fact, one can always
cast the quadratic optimization for the velocity µ̇ into a
quadratic program and use optimized numerical solvers
to extract a solution.

Grenoble network. We examine the topology of vari-
ous constrained solutions on the road network of the city
of Grenoble [29], see Fig. 3(A). This has 640 nodes and
740 edges. We set the central bus station as the destina-
tion node and select the remaining 639 nodes as origins.

Routes generated from the non-linear constraint sce-
nario balance traffic more than the unconstrained case
and result in longer routes, see Fig. 3(B-C). Adding a
budget constraint for β > 1 results in more distributed
traffic (lower Gini) without increasing much the total
path length, compared to the unconstrained case.

Discussion. Distributing flows in a transportation
network is a challenging task. Approaches based on op-
timal transport theory are promising, but they are lim-
ited by the lack of a mechanism to incorporate realistic
constraints. Our work shows how to impose arbitrary
constraints on optimal transport problems in a princi-
pled and flexible way. The constraints are lifted from a
position level to a velocity level and are included in the
corresponding mirror descent dynamics. This results in
a scalable algorithm that has a low implementation com-
plexity and solves constrained optimal transport prob-
lems in a computationally efficient manner. Due to the
fact that the algorithm relies on a sparse local approxi-
mation of the feasible set at each iteration, closed-form
updates can often be derived, even if the underlying fea-
sible set is nonconvex or nonlinear. Moreover, in the
absence of closed-form solutions, one can resort to ef-
ficent numerical methods to solve at most a quadratic
program. Our physics-based approach is a change of
paradigm with regard to how optimal transport prob-
lems are modelled and solved numerically. This calls for
a generalization of transportation problems in wider sce-
narios, e.g. in networks with multiple transport modes
[15], with real-time traffic demands [30] or with noise-
induced resonances [31].

To facilitate the usage of our model, we provide an
open source implementation within the repository [32].
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[21] E. Katifori, G. J. Szöllősi, and M. O. Magnasco, Physical
review letters 104, 048704 (2010).

[22] J. R. Banavar, F. Colaiori, A. Flammini, A. Maritan,
and A. Rinaldo, Physical Review Letters 84, 4745 (2000).

[23] J. P. Aubin and A. Cellina, Differential Inclusions
(Springer, 1984).

[24] M. Muehlebach and M. I. Jordan, Journal of Machine
Learning Research 23, 1 (2022).

[25] R. T. Rockafellar and R. J.-B. Wets, Variational Analysis
(Springer Verlag Berlin-Heidelberg, 1998).

[26] We assume mild regularity conditions (constraint quali-
fication). A sufficient condition is, for example, the exis-
tence of v ∈ RE such that ∇gi(µ)

T v > 0 for all i ∈ Iµ.
[27] Appendix, Supporting Material (2023).
[28] A. Takamatsu, T. Gomi, T. Endo, T. Hirai, and

T. Sasaki, Journal of Physics D: Applied Physics 50,
154003 (2017).

[29] R. Kujala, C. Weckström, R. K. Darst, M. N. Mladen-
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SUPPORTING MATERIAL (SM)

DETAILED MATHEMATICAL DERIVATIONS OF OPTIMAL TRANSPORT WITH CONSTRAINTS

Here we present in more details the mathematical derivations of the results presented in the main text. Specifically,
we consider the three examples of constraints described in the main manuscript: capacity on edges, budget, and a
third constraint that combines a linear capacity constraint and a non-linear budget constraint.

In the following we denote as E the set of network edges and E = ∣E∣ is the number of edges.

Capacity constraint

The first case considered is that of a local and linear constraint where we assign a capacity on individual edges
such that conductivities cannot be larger than the prescribed capacity. This is relevant in situations where struc-
tural constraints prevent a large amount of mass to travel on individual network edges without compromising the
infrastructure. Mathematically, we define for each e ∈ E the constraint as:

gce(µ) = ce − µe , (S1)

where ce is the capacity imposed on edge e. This is a parameter that a user can enter as input and can be different for
each edge. In the numerical experiments in the main manuscript we assume ce to be equal for all edges for simplicity,
but the theory here is not impacted by this choice.
By considering a vectorial representation of the constraint where gc(µ) ∈ RE is the vector with entries gce(µ), this
definition also implies that we have a constant derivative ∇µegce(µ) = −1 < 0. The constraint v ∈ Vα(µ) required to
solve the minimization in Eq. (3) implies:

∇gc(µ)
T v ≥ −αgc(µ) Ô⇒ −v ≥ −α(c − µ) Ô⇒ v ≤ α(c − µ) . (S2)

Solving the quadratic program minimization is simple in this case. For an edge that violates the constraint there
are two possibilities: either i) µβ−2

e ∣Fe∣
2 − µe ≥ α(ce − µe) or ii) µβ−2

e ∣Fe∣
2 − µe ≤ α(ce − µe). In case i) we obtain

that ve = α (ce − µe); while in ii) we have ve = (µ
β−2
e ∣Fe∣

2 − µe) = fe. However, case i) results in a reduction of the

constraint violation, as we have µ
(t+1)
e = µ

(t)
e +τ ve = µ

(t)
e +τ α (ce−µe), where τ > 0 is the algorithmic step size. Hence,

µ
(t+1)
e − ce ≤ (1 − ατ) (µ

(t)
e − ce), which means that the constraint violation µ

(t)
e − ce decreases at the exponential rate

α > 0. Thus, α controls how quickly the constraint violations decay. It controls the trade-off between reducing the
objective function (encouraged by small α) and converging to the feasible set (encouraged by larger α) [24]. In discrete
time, ατ should be chosen so that 0 < ατ < 1 to guarantee convergence. Hence, solving the quadratic program for the
setting of capacity constraints gives v = min{αgc(µ), f}. In summary, for e such that µe ≥ ce (constraint violated),
we have:

µ̇e =

⎧⎪⎪
⎨
⎪⎪⎩

α (ce − µe) if fe ≥ α (ce − µe)

fe if fe < α (ce − µe) .
(S3)

The algorithmic update is then µ
(t+1)
e = µ

(t)
e + ατ µ̇e, with 0 ≤ ατ ≤ 1 and µ̇e as in Eq. (S3).

Note that in the analytical result of Eq. (S3) we did not impose any additional positivity constraint µe ≥ 0. This
was not necessary in our empirical results, as we never found it violated, provided one initializes µe ≥ 0 at the
first iteration. We will show the importance of this additional constraint in subsequent sections when considering
constraints other than the capacity. To impose a positivity constraint, we need to enforce an additional constraint of
the form gp(µ) = µ ≥ 0. In the velocity space, this translates to v ≥ −αµ. Element-wise, the solution will be of the
form ve = max{fe,−αµe} , ∀e ∈ E such that µe ≤ 0. The analytical solution in addition to positivity constraint is
summarized as:

µ̇e =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

α (ce − µe) if fe ≥ α (ce − µe)

−αµe otherwise

(S4)

for all e ∈ E such that µe ≤ 0.
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Budget constraint

Here we illustrate our formalism to fix the global network budget b. Formally, we have:

gb(µ) = b − ∑
e∈E

µe . (S5)

In words, the conductivities µ = (µ1, . . . , µE) violate the constraint whenever their sum is greater than the input
budget b > 0. As this involves all the conductivities at once, we need to solve Eq. (3) in vectorial form, i.e., for an
input array v = (v1, . . . , vE) of dimension E. We also have ∇g(µ) = (∂g/∂µ1, . . . , ∂g/∂µE), hence

∇gb(µ)
T v = ∑

e∈E

∂gb(µ)

∂µe
ve = ∑

e∈E
(−1 ⋅ ve) = − ∑

e∈E
ve ≥ −αgb(µ) Ô⇒ ∑

e∈E
ve ≤ αgb(µ) . (S6)

This means that some ve are allowed to be positive, as long as their contribution is compensated by other negative
ones, such that their overall sum is lower than αgb(µ). Notice that beyond this budget constraint we need to guarantee
the fundamental constraint that conductivities have to be positive quantities. Formally, this can be enforced by adding
the following additional constraint:

gp(µ) = µ ≥ 0 . (S7)

In the velocity domain this translates into ∇gp(µ)
T v = v ≥ −αµ; element-wise, this means ve ≥ −αµe, ∀e ∈ E such

that µe ≤ 0.
To derive the closed-form solution in this budget constraint case, we thus minimize

argmin
ve

{
1

2
∑
e∈E

S−1e (ve − fe)
2
} , (S8)

subject to the following two constraints:

∑
e∈E

ve ≤ α(b − ∑
e∈E

µe) , if b ≤ ∑
e∈E

µe (S9)

ve ≥ −αµe, ∀e ∈ E such thatµe ≤ 0 . (S10)

To derive the closed-form solution in this case, we can add a Lagrange multiplier for the budget constraint and
solve an auxiliary constraint minimization problem with a modified cost function defined as:

L(v, λb) =
1

2
∑
e∈E

S−1e (ve − fe)
2
+ λb (∑

e∈E
ve − α(b − ∑

e∈E
µe)) . (S11)

We then want to solve:

min
v∶ve≥αµe,∀e∈E∶µe≤0

max
λb≥0

L(v, λb) . (S12)

Defining 1⃗E = (1, . . . ,1) the E-dimensional vector with entries all equal to 1 and using a vectorial representation
(where 1⃗TEv = ∑e∈E ve), this is equivalent to solve:

argmin
v∶ve≥αµe,∀e∈E∶µe≤0

{
1

2
∣S−1/2(v − f)∣2 + λb1⃗

T
Ev − αλb gb(µ)} , (S13)

where λb denotes the optimal multiplier. Equivalently, the above problem can be reformulated as

argmin
v∶ve≥αµe,∀e∈E∶µe≤0

{
1

2
∣S−1/2(v − f + Sλb1⃗E)∣

2
} = argmin

v∶ve≥αµe,∀e∈E∶µe≤0
{
1

2
∣v − f + Sλb1⃗E ∣

2
} . (S14)

For an edge such that µe ≤ 0, this has the following closed-form solution:

µ̇e =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

fe − Seλb if fe − Seλb ≥ −αµe

−αµe if fe − Seλb < −αµe .

(S15)
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Estimation of λb

Imposing the budget constraint, and defining Ip(λb) = {e ∈ E ∣ fe − Seλb < −αµe andµe ≤ 0} as the set of edges that
violate the positivity constraint (both in position and velocity), we obtain that the condition ∑e∈E∖Ip(λb)(fe− Seλb)−

α ∑e∈Ip(λb) µe ≤ αgb(µ) must be satisfied to ensure Eq. (S9). This inequality determines the value λb. In addition we
can make the following case distinction (complementary slackness) λb = 0 ⇐⇒ ∑e∈E∖Ip(0) fe − α∑e∈Ip(0) µe ≤ αgb(µ)
and λb > 0 ⇐⇒ ∑e∈E∖Ip(λb)(fe−Seλb)−α∑e∈Ip(λb) µe = αgb(µ). In the former case the solution v to Eq. (S8) is given
by Eq. (S15) with λb = 0. In the latter case we compute λb with a fixed-point method and define:

kb(λb) =
∑e∈E∖Ip(λb) fe − α ∑e∈Ip(λb) µe − α (b −∑e∈E µe)

∑e∈E∖Ip(λb) Se
. (S16)

The multiplier λb is then computed as λ
(a+1)
b = kb(λ

(a)
b ), where initial value of λ

(0)
b can be chosen for instance as

λ
(0)
b =mine∶µe≤0andfe+αµe≥0 {fe + αµe}.

Combination of linear and non-linear constraints

We now consider a more complex scenario where we combine the capacity constraint with a non-linear generalization
of the budget constraint. Specifically, we consider three functions for the constraints, a local capacity constraint
gc(µ) ∶ RE → RE , a local positivity constraint gp(µ) ∶ RE → RE and a global budget constraint gδ(µ) ∶ RE → R1.
These functions are defined as:

ge(µ) = c − µ (S17)

gp(µ) = µ (S18)

gδ(µ) = b − ∑
e∈E

µδ
e , (S19)

where b > 0 and δ > 0 are a budget and a scaling parameter, respectively. We recover the linear budget constraint for
δ = 1.
The constraint on v that result from the capacity constraint in Eq. (S17) required to solve Eq. (3) have been derived
in Sec. . The function gp(µ) imposes the positivity constraint, which means that each individual edge has to have
µe ≥ 0. The constraint gp(µ) induces the following velocity constraint

∇gpe(µ)
T ve ≥ −α µe Ô⇒ ve ≥ −αµe , (S20)

for all e ∈ E such that µe ≤ 0.
Similarly, we solve the non-linear budget constraint as follows

∇gδ(µ)
T v ≥ −α (b − ∑

e∈E
µδ
e) Ô⇒ ∑

e∈E
δµδ−1

e ve ≤ α (b − ∑
e∈E

µδ
e) , (S21)

as long as b ≤ ∑e∈E µδ
e. To derive the closed-form solution in this case, we minimize

min
ve
{
1

2
∑
e∈E

S−1e (ve − fe)
2
} , (S22)

subject to the following three constraints:

∑
e∈E

δµδ−1
e ve ≤ α(b − ∑

e∈E
µδ
e) , if b ≤ ∑

e∈E
µδ
e (S23)

ve ≥ −αµe, ∀e ∈ E such that µe ≤ 0 , (S24)

ve ≤ α (ce − µe), ∀e ∈ E such that µe ≥ ce . (S25)

To derive the closed-form solution in this case, we can add a Lagrange multiplier for the non-linear constraint and
solve an auxiliary constraint minimization problem with a modified cost function defined as:

Ln(v, λδ) =
1

2
∑
e∈E

S−1e (ve − fe)
2
+ λδ (∑

e∈E
δµδ−1

e ve − α(b − ∑
e∈E

µδ
e)) , (S26)
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where λδ ≥ 0. We then want to solve:

min
v∶

ve≤α (ce−µe),∀e∈E∶µe≥ce
ve≥−αµe,∀e∈E∶µe≤0

max
λδ≥0

Ln(v, λδ) . (S27)

Defining h = δ (µδ−1
1 , . . . , µδ−1

E ) and using a vectorial representation (where hT v = ∑e∈E δµδ−1
e ve), this is equivalent to

solving

argmin
v∶

ve≤α (ce−µe),∀e∈E∶µe≥ce
ve≥−αµe,∀e∈E∶µe≤0

{
1

2
∣S−1/2(v − f)∣2 + λδh

T v − αλδ gδ(µ)} , (S28)

where λδ ≥ 0 denotes the optimal Lagrange multiplier. Equivalently, by completing the square and ignoring terms
that do not depend on v, the above problem can be re-written as

argmin
v∶

ve≤α (ce−µe),∀e∈E∶µe≥ce
ve≥−αµe,∀e∈E∶µe≤0

{
1

2
∣S−1/2(v − f + Sλδh)∣

2
} = argmin

v∶
ve≤α (ce−µe),∀e∈E∶µe≥ce

ve≥−αµe,∀e∈E∶µe≤0

{
1

2
∣v − f + Sλδh∣

2
} . (S29)

The analytical solution to Eq. (S29) is given by

µ̇e =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

α (ce − µe) if fe−Seλδ he ≥ α (ce − µe) , ce ≤ µe ,

−αµe if fe−Seλδ he < −αµe, µe ≤ 0 ,

fe − Seλδ he otherwise .

(S30)

The analytical solution µ̇e is bounded, and a typical plot of µt
e with respect to f t

e is shown in Fig. S1. We note that
the value of µt

e is also dependent on δ and b, which determine λδ as discussed in the next section.

FIG. S1. This plot shows µ̇t
e as a function of f t

e (typical situation, the function also depends on δ and b). The solution is
expected to move at most by α (ce − µe) and at least by αµe.

Computation of λδ

By imposing the non-linear budget constraint, and defining Ip(λδ) = {e ∈ E ∣ fe − Seλδ he < −αµe, andµe ≤ 0} the set
of edges that violate the positivity constraint, and Ic(λδ) = {e ∈ E ∣ fe − Se λδ he ≥ α (ce − µe), ce ≤ µe} the set of edges
that violate the capacity constraint. We obtain that ∑e∈E∖Ipc(λδ)(fe − Seλδ) −α ∑e∈Ic(λδ) (ce − µe) −α ∑e∈Ip(λδ) µe ≤
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αgδ(µ), must be satisfied for the minimizer in Eq. (S22), where Ipc(λδ) = Ip(λδ) ∩ Ic(λδ). We again make a case
distinction on λδ ≥ 0. If ∑e∈E∖Ipc(0) fe − α∑e∈Ic(0)(ce − µe) − α∑e∈Ip(0) µe ≤ αgδ(µ) holds, λδ = 0. Otherwise λδ > 0
and ∑e∈E∖Ipc(λδ)(fe − Seλδ) − α∑e∈Ic(λδ)(ce − µe) − α∑e∈Ip(λδ) µe = αgδ(µ), which is solved by fixed-point iteration.
To that extent we introduce

kδ(λδ) =
∑e∈E∖Ipc(λδ) fe − α ∑e∈Ic(λδ)(ce − µe) − α ∑e∈Ip(λδ) µe − α (b −∑e∈E µδ

e)

∑e∈E∖Ipc(λδ) Se
, (S31)

and iterate λδ as follows λ
(a+1)
δ = kδ(λ

(a)
δ ) until convergence.

The guess for an initial value is λ(0) − δ =mine∶µe≤0andfe+αµe≥0 {fe + αµe}.

CONSTRAINED OT ADMITS LYAPUNOV FUNCTION

This section shows that the Lyapunov function of the unconstrained case is still valid when adding the auxiliary
force R that imposes the constraints.
The Lyapunov function for the dynamics µ̇ in the unconstrained case is the one given in [13]:

Lβ =
1

2
∑
j∈M
∑
v∈N

pjv(µ) q
j
v +

1

2(2 − β)
∑
e∈E

ℓeµ
2−β
e , (S32)

where N denote the set of nodes and qj ∈ N denote the inflow-outflow rate of each passenger type j such that

∑v q
j
v = 0.

To prove that the Lyapunov function is well-defined, we show the following expressions i) Lβ ≥ 0, ii) L̇β ≤ 0 and iii)

L̇β = 0 if and only if µ is a stationary point for the dynamics.
The first (energy dissipation) and second (transport cost) terms of Eq. (S32) are non-negative, hence Lβ satisfies the
inequality Lβ ≥ 0.

Now we prove claim ii), i.e. L̇β ≤ 0. First, notice that

L̇β = ∇L
T
β µ̇ (S33)

= −⟨f, µ̇⟩ (S34)

= −⟨µ̇, µ̇⟩ + ⟨R, µ̇⟩ , (S35)

where in Eq. (S34) we used ∂Lβ/∂µe = −
ℓe

2µβ
e
fe [13] and in Eq. (S35) we used µ̇ = f +R.

The inequality −⟨µ̇, µ̇⟩ = −µ̇T S−1 µ̇ ≤ 0 is valid because it results in a non-positive sum of squares. Thus, the remaining
task is to prove that ⟨R, µ̇⟩ ≤ 0. The stationarity condition of Eq. (3) can be expressed as:

(S−1(µ̇ − f))
T
(v − µ̇) ≥ 0 , ∀v ∈ Vα(µ) , (S36)

where the first factor is the gradient of the cost in Eq. (3) with respect to v, the second factor is the variation of v
and the positivity is due to µ̇ being the minimizer. Using µ̇ = f +R, we get ⟨R,v − µ̇⟩ ≥ 0 for all v ∈ Vα(µ).
Now, if µ ∈ C (µ is feasible), then Vα(µ) is a (convex) cone and therefore 0 ∈ Vα(µ). Hence, we can choose v = 0 in
the previous expression, yielding ⟨R,−µ̇⟩ ≥ 0 Ô⇒ ⟨R, µ̇⟩ ≤ 0. Hence L̇β ≤ 0.
To prove claim iii), we have established ⟨R, µ̇⟩ ≤ 0 and assuming that µ(t) > 0, we deduce the following:

L̇β = 0 ⇐⇒ ⟨µ̇, µ̇⟩ = 0, ⟨R, µ̇⟩ = 0 , (S37)

⇐⇒ µ̇ = 0 , (S38)

where µ̇ = 0 means 0 = −S∇Lβ +R, with −R ∈ NVα(µ)(0). Additionally, we have established µ(t) ∈ C, ∀t and therefore
Vα(µ) = TC(µ). As a result:

µ̇ = 0 ⇐⇒ −S∇Lβ ∈ NTC(µ)(0) , (S39)

⇐⇒ ⟨−S∇Lβ , v⟩ ≤ 0, ∀v ∈ TC(µ) , (S40)

⇐⇒ ∇Lβ(µ)
T v ≥ 0, ∀v ∈ TC(µ) . (S41)

This means that µ corresponds to a stationary point, specifically a local minimum. (Note that we have used the
simplifying assumption that µ > 0 in the above argument.)
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ALGORITHMIC IMPLEMENTATION

This section presents the algorithmic implementation of the constrained OT method in Eq. (3).
We denote as I the set of indices denoting the constraints, so that each constraint function is written as gi(µ), with
i ∈ I.

The algorithmic implementation of the constrained OT method is described in Algorithm 1.

Algorithm 1 Constrained OT Method

1: Input: Graph G(V,E), M , β, ατ ∈ (0,1], g
2: Initialize: {µ} (e.g. sampling as i.i.d. µ ∼ Unif(0,1))
3: while convergence not achieved do
4: {pau} ← use flux Fe to solve Kirchhoff’s law
5: {f t

} ← compute the gradients
6: Iµt ← {},wt

← {}

7: for i in I do
8: if gi(µ) ≤ 0 then
9: Iµt ← Iµt ∪ {i}

10: wt
← wt

∪ {∇gi(µ
t
)}

11: end if
12: end for
13: µ̇t

← solve the dynamics in Eq. (3) as follow

µ̇t
← SOLVE

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

argminv∈Vα(µt) {
1
2
∣S−1/2(v − f)∣

2
}

subject to ∶
wT

t v ≥ −α{gi(µ
t
)}i∈I

µt

⎫⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎭

.

14: Update the dynamics: {µt+1
} ← {µt

} + τ{µ̇t
}

15: end while
16: Output: Fluxes {Fe} , ∀e at convergence

To determine convergence we use the result in [13] that the stationary solution of the dynamics minimizes the
transport cost:

Jβ = ∑
e

ℓe∣Fe∣
Γ , (S42)

where Γ = 2(2 − β)/(3 − β).

ADDITIONAL EXPERIMENTAL RESULTS

This section provides more results to support the ones presented in the main paper.

We measure the Gini coefficient and average path length on the synthetic network, shown in Fig. S2. We illustrate
the topologies of the paths resulting from considering this capacity constraint on the Grenoble data and compare
against those obtained in the unconstrained case in Fig. S3.
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FIG. S2. Results over varying β on synthetic networks. (A) Gini coefficient of the traffic distribution on edges. (B) Ratio of
average total path length to that of the unconstrained OT method, denoted as ⟨l⟩f . Markers and shadows are averages and
standard deviations over 20 network realizations, with 100 randomly selected origins for each network realization. All passengers
have the same central destination. Settings: N = 300, δ = 1/2, ce = 70, b =

1
2 ∑e µe, where µe is that of unconstrained.

FIG. S3. Results on Grenoble bus network. (A) Gini coefficient of the traffic distribution on the network edges. The edge
capacity ce is the percentile of µ from f , and varied between low, medium and high capacities. Varying ce helps to understand
how the size of highway impacts the traffic. Setting a low capacity optimizes traffic better than high values. (B) The ratio of
average total path length to that of the unconstrained OT method. These results are averaged over 100 randomly selected origin-
destination pairs. The origin-destination pairs have been selected so that all the passenger types have a central destination.
Markers and shadows indicates average and standard deviation, respectively.



13

FIG. S4. Constrained OT on Grenoble road network. (A-B) Path trajectories of the Grenoble road network for the uncon-
strained OT (Unconstrained), using a budget constraint (Budget); a capacity constraint and a non-linear budget (Non-linear).
Other settings are the same as in Fig. 3.
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FIG. S5. Edge-wise difference only plots on Grenoble bus network. We compute the difference of traffic on edges as T c
e − T

u
e

where T c
e and Tu

e denote the traffic for constrained and unconstrained methods, respectively. Other settings are the same as in
Fig. 3.
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