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Anomaly detection algorithms are a valuable tool in network science for identifying unusual pat-
terns in a network. These algorithms have numerous practical applications, including detecting
fraud, identifying network security threats, and uncovering significant interactions within a dataset.
In this project, we propose a probabilistic generative approach that incorporates community mem-
bership and reciprocity as key factors driving regular behavior in a network, which can be used
to identify potential anomalies that deviate from expected patterns. We model pairs of edges in
a network with exact two-edge joint distributions. As a result, our approach captures the exact
relationship between pairs of edges and provides a more comprehensive view of social networks.
Additionally, our study highlights the role of reciprocity in network analysis and can inform the
design of future models and algorithms. We also develop an efficient algorithmic implementation
that takes advantage of the sparsity of the network.

I. INTRODUCTION

Anomaly detection algorithms are a crucial tool in
the study of networks. These algorithms are designed
to identify unusual or unexpected patterns in the data,
which can provide valuable insights into the structure
and function of a network [1, 2]. For instance, anomalous
edges in a network may indicate the presence of a struc-
tural flaw or a potential problem, such as a vulnerability
to attack. By detecting and analyzing these anomalies,
we can gain a better understanding of the network and
potentially identify ways to improve its performance or
security [3]. In addition, anomaly detection algorithms
can be used to monitor networks in real-time, allowing
researchers to quickly identify and respond to potential
issues as they arise.

Anomalies are often difficult to define precisely because
they can vary depending on the context and the system
being analyzed [4]. For example, in a network of online
transactions, an anomaly could be a sudden spike in the
number of transactions coming from a single user [5]. In
this case, the regular behavior in the system would be
the typical number of transactions coming from a sin-
gle user, and any deviation from this pattern would be
considered as anomaly. Hence, one of the main obstacles
in detecting anomalies in networks is determining what
is considered “normal" (or “regular”) behavior. To over-
come this challenge, we must create a null model which is
a realistic representation of the network data. This null
model provides a standard against which we can compare
the network data and identify anomalies.
Relevant approaches to address this problem include
statistics-based methods, which fit a statistical model to
the network data [6, 7]. Among these, generative models
[8–10] make assumptions about the processes that drive
network formation and evolution to generate synthetic
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network data. By using these approaches, we can define
null models that are tailored to the specific characteris-
tics of the network under study. This is the approach we
take here.

In this work, we focus on plain networks, which only
contain information about the presence or absence of con-
nections between individuals, and do not include any ad-
ditional information. One approach to perform anomaly
detection in these binary and single-layer networks is to
use the structure of the graph to identify patterns and
detect deviations from them [1]. These structural pat-
terns can be divided into two categories: patterns based
on the overall structure of the graph, and patterns based
on the community structure of the graph. Methods in
the first category rely on the global properties of the
graph [11], such as the distribution of node degrees or
the overall connectivity of the network. On the other
hand, methods in the second category perform anomaly
detection by focusing on the local properties of the graph,
such as the membership of nodes in communities [12, 13].
Hence, with the second approach, we assume that the
null model reflects a community structure that can be
identified through latent variables, a process known as
community detection task [14]. Thus, by considering the
community structure, anomalous behavior can be deter-
mined in this context. For example, a friendship between
two individuals from different groups, such as high school
classmates and college classmates, could be considered
anomalous. We recently developed a model (ACD) that
performs anomaly detection by using community struc-
ture [15], where anomalous edges are those that deviate
from regular patterns determined by community struc-
ture. As a result, this model outputs both node mem-
berships and edge labels identifying them as legitimate
or anomalous.

Accurately identifying anomalies is deeply connected
with the chosen null model determining what regular pat-
terns are. As a consequence, it is important to consider
other possible mechanisms for tie formation, beyond com-
munity structure. For instance, reciprocity, another fun-
damental structural feature in networks [16–18], refers
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to the mutual exchange of resources or actions between
individuals or groups. This can include actions such as
returning a favor, sharing information or resources, or
collaborating on a project. For example, in a social net-
work, if two individuals consistently like and comment on
each other’s posts, this could be considered reciprocity.
In a business network, if two companies frequently refer
customers to each other, this could also be considered
reciprocity. Mathematically, it is calculated as the ratio
of the number of reciprocated edges to the total number
of edges in the graph. Recent works [19, 20] have shown
that including reciprocity effects in the modeling of com-
munity patterns results in more accurate and expressive
generative models. This has the potential to improve the
performance of an anomaly detection model for networks
as well.

In this work, we develop a probabilistic genera-
tive model that we refer to as Community Reciprocity
Anomaly Detection (CRAD) algorithm, that performs
anomaly detection by proposing a null model based on
both community structure and reciprocity. Intuitively,
our model regards as regular ties those who follow the
group membership and reciprocity effects, and as anoma-
lous ties those whose formation process is not aligned
with these two mechanisms. Notice that node member-
ships, reciprocity effect, and anomalous edges are all un-
known processes. Our model is able to infer them from
data by representing them as latent variables in a prob-
abilistic model.

More specifically, we model the existence of ties be-
tween pairs of nodes using a bivariate Bernoulli distribu-
tion. This has the crucial statistical property that inde-
pendence and uncorrelatedness of the component random
variables are equivalent [21], which facilitates the deriva-
tion of a closed-form joint distribution of a pair of edges.
Furthermore, both the marginal and conditional distri-
butions are Bernoulli distributions, enabling closed-form
analytical expressions. This facilitates downstream anal-
ysis and also improves model performance, as shown in
[19].

II. THE MODEL

We are given an adjacency matrix, A as our observed
data, with entries indicating the presence or absence of
an edge from node i to node j, represented by Aij = 1
or Aij = 0, respectively. Pairs of directed edges between

two nodes (i, j) are defined as A(ij) = (Aij , Aji). We con-
sider binary data, thus A(ij) ∈ {0, 1}

2
= {0, 1} × {0, 1},

and directed networks, i.e., in general Aij 6= Aji. We aim
at classifying any such pair as either regular or anoma-
lous, accounting for community structure and reciprocity
effects. For this, we introduce a Bernoulli random vari-
able that represents the binary label of being anomalous
or not as a random variable:

σ(ij) ∼ Bern(µ) , (1)
where σ(ij) = 0, 1 if the pair A(ij) is regular or anoma-
lous, respectively. In this work we assume that edges
between any pair of nodes must be either anomalous or
regular. Mathematically, this means that the matrix σ
with entries σij is symmetric, i.e., σij = σji. These
latent variables must be learned from data, as anoma-
lies are not known in advance. They also determine the
mechanism from which the pair of edges are drawn. The
hyper-parameter µ ∈ [0, 1] controls the prior distribution
of σ(ij).

With these main ingredients in mind, we can pro-
ceed to characterize the joint probability distribution of
pairs of edges. Assuming to know the label σ(ij) for a
given pair of edges, we denote the pair joint probabil-
ity p(`)nm = P (`)(Aij = n,Aji = m), where n,m ∈ {0, 1}
and ` ∈ {r, a} denotes the label being regular or anoma-
lous, respectively. We then consider the joint probability
distribution of a pair of edges as a bivariate Bernoulli
distribution:

P (A(ij), σ(ij)) = P (Aij , Aji, σ(ij)) = P (Aij , Aji|σ(ij))P (σ(ij))

= P (a)(Aij , Aji|θa)σ(ij) P (r)(Aij , Aji|θr)1−σ(ij) P (σ(ij)|µ)

=
[
[p

(a)
11 ]AijAji [p

(a)
10 ]Aij(1−Aji)[p

(a)
01 ](1−Aij)Aji [p

(a)
00 ](1−Aij)(1−Aji)

]σ(ij)

×
[
[p

(r)
11 ]

AijAji [p
(r)
10 ]

Aij(1−Aji)[p
(r)
01 ]

(1−Aij)Aji [p
(r)
00 ]

(1−Aij)(1−Aji)
]1−σ(ij)

× µσ(ij) (1− µ)1−σ(ij) , (2)

where θr and θa denote parameters specific to the two
distributions P (r) and P (a). The parameters p(`)nm must
satisfy

∑
n,m=0,1 p

(`)
nm = 1 to have valid probability den-

sity functions.
Following the notation as in [19, 21], we can rewrite

the full joint probability density function in Eq. (2), as
the product,

P (A,σ) =
∏
(i,j)

[
exp

{
Aijf

(a)
ij +Aji f

(a)
ji +AijAji J

(a)
(ij)

}
Z

(a)
(ij)

× µ

]σ(ij)
[

exp
{
Aijf

(r)
ij +Ajif

(r)
ji +AijAji J

(r)
(ij)

}
Z

(r)
(ij)

× (1− µ)

]1−σ(ij)

,

(3)
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where p(`)00 = 1/Z
(`)
(ij), and Z

(`)
(ij) is the normalization con-

stant for the regular or anomalous edges, for ` ∈ {r, a};
f
(`)
ij , f

(`)
ji , and J

(`)
(ij) are the natural parameters of their

density functions. The interaction term J
(`)
(ij) appears in

order to capture reciprocity. It allows to have a joint
pair distribution P (Aij , Aji|σ(ij)) that is not simply the
product of two independent distributions P (Aij |σ(ij)) ×
P (Aji|σ(ij)), as it is usually assumed in cases where reci-
procity (or other properties involving more than on vari-
able) is not taken into account explicitly.
These parameters can be expressed in terms of the prob-
ability of occurrence of edges as follows:

f
(`)
ij = log

(
p
(`)
10

p
(`)
00

)
, f

(`)
ji = log

(
p
(`)
01

p
(`)
00

)
,

J
(`)
(ij) = log

(
p
(`)
11 p

(`)
00

p
(`)
10 p

(`)
01

)
, ` = {r, a} . (4)

We aim at modeling reciprocity when two edges are
regular, as this can be the result of a reasonable tie for-
mation mechanism involving two nodes, e.g., exchanging

Aij Aji

ui vj uj vi

η w µ π

σ
(i
j
)
=

0

σ
(i
j
)
=

1

∀(i, j) ∈ E

(a) Graphical model representation.

(b) Network example.

FIG. 1: Model visualization. (a) Graphical model:
the entry of the adjacency matrix Aij is determined by
the community-related latent variables u, v, w and the
reciprocity parameter η (blue); and by the
anomaly-related parameters π (orange) and the
hyper-prior µ (grey). (b) Example of a possible
realization of the model: blue edges display interactions
based on community and reciprocity and the orange
ones are anomalous.

favors or cooperative behaviors. For anomalous edges in-
stead, it is less clear what would reciprocity mean, hence
we remain agnostic to it and assume that the edges i→ j
and j → i are independent when they are anomalous. In
other words, the existence of the anomalous edge Aji
has no influence on its reciprocated edge Aij , which is
also anomalous. To reflect this mathematically, we set
J
(a)
(ij) = 0. This follows the properties of multivariate

Bernoulli distributions, where independence and uncor-
relatedness are equivalent phenomena [21]. As the cor-
relation between the pair of edges (Aij , Aji) is captured
by J (`)

(ij), when J
(`)
(ij) = 0, the pair (Aij , Aji) is uncorre-

lated. In addition, we assume a symmetric structure of
f (a) = f

(a)
ij = f

(a)
ji for all anomalous edges.

To summarize the steps of our proposed generative
model: we first draw hidden labels for the edges, de-
termining them being regular or anomalous; then, we
draw pairs of edges (Aij , Aji) from a specific form of dis-
tribution depending on the edges’ labels. Formally, the
generative model is:

σ(ij) ∼ Bern(µ) (5)

A(ij) ∼


exp{(Aij+Aji)f

(a)}
Z

(a)

(ij)

if σ(ij) = 1

exp
{
Aijf

(r)
ij +Ajif

(r)
ji +AijAjiJ

(r)

(ij)

}
Z

(r)

(ij)

if σ(ij) = 0

(6)

Up to this point, we focused on reciprocity and how
to incorporate it into our model via the interaction term
J
(r)
(ij). Now, we turn our attention to community struc-

ture, another important mechanism that we believe reg-
ulates tie formation of regular edges. Conversely, we
assume that communities have no influence on anoma-
lous edges. To formalize this, we utilize similar model
specifications as outlined in [19], and we incorporate
community structure through latent variables embedded
in the natural parameters of the joint pair distribution
P (r)(Aij , Aji). In detail, we assume the tie formation de-
pends on communities and reciprocity for regular edges,
and only on anomaly parameter for anomalous ties.

f
(r)
ij = log λij , f

(r)
ji = log λji , (7)

J
(r)
(ij) = log η , (8)

f (a) = log π , (9)

where

λij =

K∑
k,q=1

uikvjqwkq , (10)

regulates how mixed-membership community structure
determines tie formation in directed networks, as in [22].
We provide a schematic visualization of these contri-
butions in Fig. 1. The normalization parameters are
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obtained by enforcing the normalization constraint us-
ing the above definitions, so that Z(a)

(ij) = (π + 1)2 and

Z
(r)
(ij) = λij + λji + ηλijλji + 1.

The parameters λ and η play important roles in
our model of community-reciprocity structure. λ cap-
tures the mixed-membership aspect, while η is the pair-
interaction coefficient that regulates the formation of
pairs of edges between nodes. TheK-dimensional vectors
ui and vi represent the out-going and in-coming commu-
nities of node i, respectively. The entries in these vectors,
uik ≥ 0 and vjq ≥ 0, represent the weights assigned to
each community, where K is the number of communities.
The value ofK can be either specified as input or selected
using model selection criteria, such as cross-validation
[22]. The affinity matrix wkq controls the structure of
the communities, with higher values on the diagonal in-
dicating more assortative communities. The formation
of anomalous edges is derived by the latent parameter
π > 0, as in the limπ → 0 the probability of the existence
of an anomalous edge converges to zero (see Appendix A
for more details on derivations). All of these parame-
ters, along with µ, are included in the latent parameter
set Θ = {{ui}, {vi}, {wkq}, η, π, µ} that will be inferred
from data. In addition to point estimates of these pa-
rameters, our model returns a posterior estimate for the
edge label variable σ(ij) in the form of a Bernoulli pos-
terior distribution of parameter Q(ij). This is also the
estimated expected value of the edge label. We provide
more details in Sec. III.

Our model assumes that community structure drives
the process of formation of a regular edge, and that the
regular edges between a pair of nodes depend on each
other explicitly according to the value of η. If J (r)

(ij) = 0

(when η = 1), the probability of the edges between
nodes i and j is determined solely by their respective
communities. On the other hand, a positive value of J (r)

(ij)

(when η > 1) increases the probability of the existence
of both i → j and j → i, while a negative value (when
0 < η < 1) decreases it.

By utilizing properties of the bivariate Bernoulli dis-
tribution [19, 21], we obtain a closed-form solution for
the expected value of an edge (see for more details Ap-
pendix A):

E [Aij ] = (1−Q(ij))
λij + ηλijλji

Z
(r)
(ij)

+Q(ij)
π

1 + π
. (11)

This result is useful in link prediction experiments, in
that we can score edges based on the values calculated
from Eq. (11) and use these to compute prediction met-
rics such as the area under the receiver operating curve
(AUC), we illustrate this in Sec. IVA.

Algorithm 1 CRAD : EM algorithm.
Input: network A = {Aij}Ni,j=1,

number of communities K.
Output: memberships u = [uik] , v = [vik]; network

affinity matrix w = [wkq]; pair-interaction
coefficient η; anomaly parameter π; prior on
anomaly indicator µ.

Initialize Θ : (u, v, w, η, π, µ) at random.
Repeat until L(Θ) convergence:
1. Calculate ρ and Q (E-step):

ρijkq ∼ as in Eq.(B13) ,

Qij ∼ as in Eq.(B22) .

2. Update parameters Θ (M-step):
i) for each node i and community k update

memberships:

uik =

∑
jq(1−Q(ij))Aijρijkq∑

j

[∑
q(1−Q(ij)) (1+η λji) vjqwkq

λij+λji+ηλijλji+1

]
vik =

∑
jq(1−Q(ij))Ajiρjiqk∑

j

[∑
q(1−Q(ij)) (1+η λij)ujqwqk

λij+λji+ηλijλji+1

]
ii) for each pair (k, q) update affinity matrix:

wkq =

∑
i,j(1−Q(ij))Aijρijkq∑

i,j

[
(1−Q(ij)) (1+η λij)uikvjq

λij+λji+ηλijλji+1

]
iii) update pair-interaction coefficient:

η =

∑
(i,j)(1−Q(ij))AijAji∑

(i,j)(1−Q(ij))
[

λijλji

λij+λji+ηλijλji+1

]
iv) update anomaly parameter:

π =

∑
(i,j)Q(ij) (Aij +Aji)∑

(i,j)Q(ij) (2−Aij −Aji)

v) update prior on anomaly indicator:

µ =
1

N(N − 1)/2

∑
(i,j)

Q(ij) .

III. INFERENCE

Our ultimate goal is to determine Θ, the latent pa-
rameters of the model. To do this, we maximize the pos-
terior probability P (Θ|A) =

∑
σ P (σ,Θ|A). Instead of

directly maximizing this probability, it is more compu-
tationally efficient to maximize the log-posterior, as the
maxima of the two functions are equivalent:
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L(Θ) = logP (Θ|A) = log
∑
σ P (σ,Θ|A)

≥
∑
σ q(σ) log P (σ,Θ|A)

q(σ) , (12)

where we defined q(σ), a variational distribution that
must sum to 1. Our maximum likelihood approach in-
volves the use of an expectation-maximization (EM) al-
gorithm in which we alternately update different sets of
parameters of our model. More specifically, we first up-
date the variational distribution parameters (E-step), ρ
and Q, and then maximize L(Θ) with respect to Θ (M-
step). This process is repeated until L(Θ) converges, sig-
nifying the completion of the optimization process. The
full procedure is outlined in Algorithm 1 (see Appendix B
for more details on the inference task). The computa-
tional complexity of the algorithm is O(N2), primarily
due to the terms in the dense matrix Q(ij) that are not
multiplied by the sparse adjacency matrix Aij . As Q
is crucial for identifying anomalous edges, its presence
may make the model infeasible for large systems. Inves-
tigating ways to reduce this complexity, for instance by
making its representation sparse, is an interesting avenue
for future work.

IV. RESULTS

A. Synthetic datasets

We validate our model on synthetic datasets, gener-
ated with the generative algorithm in appendix C. The
studied datasets consist of N = 500 nodes, with an av-
erage degree of 〈k〉 = 60. The number of communities is
set to K = 3, and the pair-interaction coefficient, η, has
a range of values. The anomaly density (ratio of anoma-
lous edges to total number of edges) is varied within the
interval ρa ∈ [0, 1]. We compare CRAD with JointCRep
[19], which is what CRAD reduces to if we had not con-
sidered anomalies, i.e., when µ = 0 and limπ → 0. This
allows to focus on observing the impact of considering
the existence of anomalous edges in a given dataset.

In order to determine the effectiveness of our proposed
model, which is based on the concept of community struc-
ture, we first evaluate its ability to accurately identify
the memberships of individuals within a community. To
accomplish this, we measure the cosine similarity (CS)
between the ground truth and inferred community mem-
berships vectors. The CS has values in [0, 1], with CS = 1
indicating the best performance. For this task, we also
run a Bayesian Poisson matrix factorization (BPMF) al-
gorithm [23]. BPMF is a scalable algorithm for factor-
izing sparse matrices and provides a useful comparison
for our proposed algorithm. We run all algorithms on
synthetic datasets generated by CRAD (see Appendix C
for more details). The results, as illustrated in Fig. 6 (a)

and (b), show that when the proportion of anomalous
edges in the dataset is relatively low, BPMF outperforms
our proposed algorithm. However, when the number of
anomalous edges is above 50% of the total number of
edges, our algorithm is still able to detect community
structure with a reasonable level of accuracy. Addition-
ally, it can be observed that CRAD performs the same as
JointCRep; with both models having higher performance
for smaller values of the anomaly density, ρa. This behav-
ior is expected, as for higher values of ρa, the community
structure plays a weaker role in the formation of edges.

It is worth mentioning that the primary objective of
the current research is to develop the capabilities of
JointCRep through the incorporation of anomaly detec-
tion functionality, rather than focusing on further im-
proving its community detection abilities or recovering
reciprocity parameter. Therefore, our focus is on assess-
ing and optimizing the model’s anomaly detection poten-
tial. For this, we measure the AUC on edges, i.e., on a
binary matrix that stores what edges are true anomalies,
and use as scores the inferred Q(ij). From our results,
illustrated in panels (e) and (f) in Fig. 6, we find that
CRAD demonstrates good performance in the detection
of anomalous edges across a range of anomaly densities.
Furthermore, the integration of reciprocity effects is en-
hancing performance, compared to a model (ACD) where
there is no such effect [15].

In addition to evaluating anomaly detection, we are
also interested in assessing the ability of CRAD to iden-
tify missing edges, also known as link prediction task.
In these experiments we employ a 5-fold cross-validation
approach, where the dataset is split in five sets of data.
In each realization, four of these groups are utilized as a
training set to infer the parameters Θ. The remaining
group is used as a test set, where the score for each pair
(Aij , Aji) in the matrix is evaluated to compute the AUC.
By iteratively varying which group serves as the test set,
we obtain a total of five trials per realization. The fi-
nal AUC value is determined by averaging the results of
these trials. The score of an edge is calculated using the
closed-form expression for its marginal probability, as de-
scribed in Eq. (11). As shown in panels (c) and (d) in
Fig. 6, an increase in the reciprocity parameter results in
an increase in the AUC for both CRAD and JointCRep,
however, we observe a bigger improvement in terms of
AUC of CRAD over the competitive algorithms. These
results indicate that our model becomes more effective in
link prediction tasks for higher values of reciprocity.

B. Real World datasets

In order to assess the practical utility of our model, we
investigate its usage on a variety of real-world data cover-
ing applications as food-sharing between bats, social sup-
port interactions in a rural community, email exchanges,
and online dating. Their sizes range from N = 19 to
N = 3562, see Table I in Appendix E for a summary
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FIG. 2: Precision in detecting the injected edges
in the vampire-bat network. The precision increases
by the increase in the number of anomalous edges
injected in the network, i.e., anomaly density in the
dataset, ρa. The results is the average over 10 randomly
injected sets of edges, bars are standard deviations.
Here we use the initialization π = 0.1.

description.
Injecting anomalous edges To evaluate the accuracy

and precision of the model in detecting anomalous edges,
we first need to know the true label of edges, being
anomalous or regular. However, one of the challenges in
this regard is the lack of data containing explicit anoma-
lies. To address this challenge, we conduct an experi-
ment where we inject n random edges between nodes in
a real dataset and label them as anomalous. We vary n
to evaluate the impact of anomaly density ρa = n/E
on model performance. We then run our model on
this manipulated dataset and infer the expected value
E
[
σ(ij)

]
= Q̂(ij) ∈ [0, 1] for the edge labels, which also

indicates the likelihood that the edges between two nodes
are anomalous. Based on this, we assign labels to the
edges. In this specific experiment, we label the first n
pairs (i, j) with the highest values of Q̂(ij) as anomalous
edges. We measure the precision as performance met-
ric, this is the fraction of inferred anomalous edges which
are correctly classified (in our case–since we fix the num-
ber of inferred anomalous to be equal to the number of
injected anomalous edges–this also corresponds to recall,
i.e., the fraction of true anomalous edges that are inferred
as such).

1. Smaller datasets

a. Vampire bat network The vampire bat network
is a complex and dynamic social structure in which in-
dividual vampire bats form connections and share food
with one another [24]. The bats have a remarkable ability
to detect the body heat of other bats, even in complete
darkness, allowing them to locate potential food sources

FIG. 3: Anomaly Detection in the vampire-bat
network. We show the distribution of Q̂(ij), i.e., the
probability of a pair of edges (i, j) being anomalous, as
estimated by CRAD. We distinguish the true regular
and anomalous edges with different colours, blue and
orange, respectively, to highlight their different inferred
distributions. Here, ρa = 0.09 and π = 0.1. We measure
a precision of 0.4. For this, we label as anomalous the
fraction of ρa edges with highest Q̂(ij). The vertical
dashed line denotes the minimum Q̂(ij) observed in this
set of anomalous edges.

and potential recipients for food sharing. When a bat
finds food, it will often regurgitate some of it and share
it with other members of its network. This behavior,
known as reciprocal altruism, is essential for the survival
of the group, as it ensures that all members have access
to food even when they are unable to find it themselves.
The decision of who to feed is likely to be influenced by
both the genetic relatedness of the individuals involved
and their history of reciprocal sharing. Given this, we
expect that reciprocity will play a significant role in de-
termining which individuals form close social ties within
this network. As such, when examining this dataset, it
will be important to carefully consider this effect. In our
analysis, we use the data obtained from [24] and remove
isolated nodes. The network consists of N = 19 nodes,
E = 103 edges and has high reciprocity of 0.64. In addi-
tion, we fix K = 2 as in [19].

As shown in Fig. 2, our model’s ability to detect
anomalies improves when there is a higher concentration
of anomalies in the dataset. The plot depicts the pre-
cision in detecting the anomalous edges, for a range of
anomaly density, ρa. In a more specific case, Fig. 3 pro-
vides an example of how CRAD can be used for anomaly
detection in the vampire-bat dataset. In this example,
a set of edges with ρa = 0.09 were embedded in the
system. In this figure, the entries of the estimated Q̂
matrix, which represent the probability of edges being
anomalous, are categorized based on their true labels and
assigned different colours to highlight their different in-
ferred distributions of Q̂. The plot clearly shows two



7

different distributions, one highly picked at Q̂(ij) = 0

and the other picked around Q̂(ij) = 0.1. The first cor-
responds to regular edges, which are thus correctly iden-
tified as such, while the latter are the injected anoma-
lies, which are indeed assigned a higher probability of
being anomalous. While there are few regular edges that
have a high Q̂, we observe that a significant density of
anomalous edges is concentrated at Q̂(ij) > 0.1, indicat-
ing that the model is correctly assigning them as anoma-
lous. Quantitatively, we measure precision and recall val-
ues of 0.4, obtained by labelling as anomalous the frac-
tion of ρa = 0.09 edges with highest Q̂(ij). Even though
a small fraction of regular edges are classified as anoma-
lous and vice versa, these numbers show that overall the
algorithm is doing well at detecting the injected anoma-
lies.

b. A Nicaraguan community The next dataset
represents the social support network of indigenous
Nicaraguan horticulturalists [25]. The original dataset is
self-reported network data. Ties are reported by several
individuals and these may be in disagreement with each
other. Hence, we process it using VIMuRe algorithm [17],
which estimates probabilistically an underlying network
structure from self-reported network data, provided by
multiple reporters, accounting for reciprocity. The sum-
mary description of the estimated network by VIMuRe
can be seen in Table I. In addition, it estimates the re-
liability θ > 0 of each individual reporter, with higher
values denoting over-reporting. Reliabilities can be cor-
related to anomalies in that we expect that unreliable
reporters may report non-existence ties which we inter-
pret as anomaly.

To assess this, we run VIMuRe twice. The first time,
we run its default version and use it to collect estimates
of reporters’ reliabilities. The second time, we run it in
a modified version where we fix the reliability parame-
ters to a neutral value, assuming that all reporters are
reliable. We use this output, the estimated network in
this modified version, as input for CRAD. In this way,
we aim at observing proxies for anomalous edges: these
are some of the edges that are involving unreliable re-
porters, as estimated in the first run of VIMuRe. Our
model labels anomalies on edges, instead in this dataset
we have information on nodes (their reliabilities). We can
build a correspondence between these two types of infor-
mation by assuming that edges connected to the most
unreliable reporters would have highest value in the es-
timated Q̂ matrix. To quantify this match, we assign a
value Q̂i = maxj∈∂i Q̂(ij) to each reporter i, where ∂j is
its neighbourhood, being the maximum probability that
one of its connecting ties is anomalous.

We expect Q̂i to be high for nodes that have a high
unreliability θ. We find indeed a positive correlation of
0.46 between θi and Q̂i, as shown in Fig. 4. In partic-
ular, we observe that the edge (76, 3) between the two
most unreliable nodes has the maximum observed value
of Q̂(ij) = 0.36, which is consistent with the findings re-
ported in [17]. Notice that we expect this correlation

FIG. 4: Anomaly Detection in a Nicaraguan
social support network. We show a scatterplot of Q̂i
(the maximum probability that one of the connecting
ties of node i is anomalous), as estimated by CRAD,
against θi, reporters’ reliabilities, as estimated by
VIMuRe algorithm. The correlation is calculated as the
Pearson coefficient, the dashed line is a linear fit to the
data. Positive correlation signals that nodes that are
more unreliable (high θi) tend to have an edge that is
more likely to be labeled as anomalous among its
connections.

to further increase if we were able to account explicitly
for anomalies on nodes (instead of on edges). In this
case, one could envision adapting our formalism to as-
sign random variables σi to nodes, which may result in
less tractable distributions and thus higher complexity,
but may be more appropriate for applications in which
nodes act consistently as anomalous. We leave this as an
open question for future work.

2. Larger datasets

In this section, we test our algorithm on UC Irvine and
POK messages, as examples of larger datasets. In each
case, we randomly select and add 10% additional edges,
labeled as anomalous. The CRAD algorithm consistently
produces reliable results in detecting anomalies in both
datasets.

a. UC Irvine messages The network of UC Irvine
messages is composed of messages sent between users of
an online community of students from the University of
California, Irvine [26]. Each node in this communica-
tion network represents a user and each directed edge
represents a message that was sent from one user to an-
other. Our model consistently identified anomalies in this
dataset with a high level of accuracy, as evidenced by a
particularly high peak in the distribution of Q̂(ij) corre-
sponding to anomalous edges in Fig. 5 (a). This is also
quantified with a precision value of 0.63 in the confusion
matrix shown in Fig. 5 (b).

b. Network of online dating The POK dataset is
a large data set containing the messages exchanged by
users within the online dating POK community. The
results depicted in Fig. 5 (c-d) demonstrate the strong
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(a) (b) (c) (d)

UC Irvine POK

FIG. 5: Anomaly Detection in the UC Irvine and POK networks. We show the distribution of Q̂(ij), i.e.,
the probability of a pair of edges (i, j) being anomalous ((a),(c)) and the confusion matrix ((b),(d)), as estimated by
CRAD, for the UC Irvine (left) and POK (right) datasets. We distinguish the true regular and anomalous edges
with different colours, blue and orange, respectively, to highlight their different inferred distributions. Here, ρa = 0.1
and π = 0.3. We measure a precision of 0.63 for UC Irvine and of 0.71 for POK network. The vertical dashed line
denotes the minimum Q̂(ij) observed in this set of anomalous edges.

performance in identifying and reconstructing anomalous
edges. Figure 5 (c) illustrates how, also in this case,
the distribution of Q̂ values for the anomalous edges is
peaked around higher values. While this distribution is
more distributed (i.e., has higher variance) than the anal-
ogous one observed for UC Irvine, here we observe the
distribution corresponding to regular edges being more
peaked around zero. This means that in this case the
model is distinguishing more clearly the regular edges,
with the consequence of obtaining a higher precision of
0.71, as shown in the confusion matrix of Fig. 5 (d).
Taken together, these results support the efficacy of our
classification methodology.

V. CONCLUSION

We introduce an expressive generative model to de-
tect edge anomalies in networks that takes into account
community membership and reciprocity as main mech-
anisms driving tie formation. By leveraging these two
effects, it is able to detect what edges deviate from a
regular behavior and estimate their probability of being
anomalous. This inference is performed in a joint learn-
ing of edge anomalies and mixed-memberships of nodes
in communities, thus allowing practitioners to flag po-
tential irregular edges while providing an interpretable
community structure.

In contrast to common models for anomaly detection
that rely on metadata on edges or nodes, our model
takes as input only the adjacency matrix and estimates
anomaly labels on the edges. It is an unsupervised model,
meaning it does not require any input label to train
it. These features make it particularly relevant in cases
where extra information is not available –which is the

case for many networked datasets– where the applicabil-
ity of many machine learning methods for anomaly detec-
tion is significantly limited. As an example, traditional
models for anomaly detection in financial transactions
often rely on metadata such as transaction amount, lo-
cation, and merchant information [5, 27, 28]. Instead, our
model only requires the adjacency matrix of the transac-
tions, which represents the connections between different
account holders.

One key feature of our model is that it provides a joint
probability for the existing pairs of edges between any
pairs of nodes, allowing for the inclusion of reciprocity
in the model, a relevant property in many directed net-
works. Furthermore, our model allows for mixed com-
munity membership, meaning that nodes can belong to
more than one community. This is a more realistic rep-
resentation of data structures compared to models that
assume a single community membership for each node.

There are numbers of ways that our model could be
further improved. As mentioned above, our model takes
little information in input, only the network’s adjacency
matrix. A natural next step would be to extend the cur-
rent model to account for extra information as node at-
tributes, using ideas from generative models with both
communities and attributes [29, 30]; or to consider tech-
niques from semi-supervised learning [31], in case of avail-
ability of labels on a subset of the edges.
Furthermore, we can envision that, for rich and large
datasets, deep learning architectures for anomaly detec-
tion [32–34] may be competitive methods. However, one
could imagine extending standard architectures by com-
bining them with the main ingredients of our model,
in datasets where communities and reciprocity matter.
The robust performance in detecting anomalies in real
data with no extra information suggests that by combin-
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ing these insights with complex deep architectures may
make the latter more expressive and thus boost predic-
tive power.
Another type of extra information that is present in many
real datasets is time [35]. Edges can be timestamped
and this could be used to improve estimates of anoma-
lies. Hence, future work could be directed at general-
izing our model to dynamical networks, for instance by
combining insights from generative models for dynamic
networks with communities [36–38].

It is important to note that the inferred labels for edges
in our model should be treated as estimates rather than
definitive conclusions. These labels should be used with
caution in the study of a network, as further investiga-
tion may be necessary to fully understand the nature
of anomalous edges. However, our model can provide
valuable insights for practitioners to better understand
and interpret the networks they are studying, especially
when combined with their specialized knowledge and un-
derstanding of the data at hand.
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APPENDIX A: DETAILED DERIVATIONS

Anomalous edges: As in the formation of anomalous edges, the reciprocated edges are independent, we apply the
condition J (a)

(ij) = 0, therefore from Eq.(4), we find

p
(a)
11 p

(a)
00

p
(a)
10 p

(a)
01

= 1 ⇒ p
(a)
11 =

p
(a)
10 p

(a)
01

p
(a)
00

. (A1)

Moreover, f (a)(ij) = f
(a)
(ji) = f (a) =⇒ p

(a)
10 = p

(a)
01 = p(a) and

f (a) = log π = log
p(a)

p
(a)
00

⇒ p(a) = π p
(a)
00 . (A2)

Using the normalization condition, p(a)00 + p
(a)
10 + p

(a)
01 + p

(a)
11 = 1, and the results of Eqs. (A1)–(A2), we find the explicit

mapping between the latent variables and the instances of P (a)(Aij , Aji|θa) in Eq. (2),

p
(a)
00 =

1

Z
(a)
ij

, p
(a)
10 = p

(a)
01 =

π

Z
(a)
ij

, p
(a)
11 =

π2

Z
(a)
ij

, (A3)

where the normalization constant is:

Z
(a)
ij = (1 + π)2 . (A4)

Regular edges: In order to find the explicit mapping between the latent variables and the instances of
P (r)(Aij , Aji|θr) in Eq. (2), we follow the same procedure as in [19],

p
(r)
01 =

λji

Z
(r)
(ij)

(A5)

p
(r)
10 =

λij

Z
(r)
(ij)

(A6)

p
(r)
11 =

ηλijλji

Z
(r)
(ij)

(A7)

p
(r)
00 =

1

Z
(r)
(ij)

, (A8)

where the normalization constant is:

Z
(r)
(ij) = λij + λji + ηλijλji + 1 . (A9)

Having these mappings, we can construct the marginal and conditional distributions of the ties. Thus, the
marginal and conditional distributions of Aij have the following densities, respectively:

P (Aij) =
[
[p

(r)
10 ]Aij [p

(r)
00 ](1−Aij)) + [p

(r)
11 ]Aij [p

(r)
01 ](1−Aij)

]
× (1− µ) +

[
[p

(a)
10 ]Aij [p

(a)
00 ](1−Aij) + [p

(a)
11 ]Aij [p

(a)
01 ](1−Aij)

]
× µ ,
(A10)
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P (Aij |Aji) =
[p

(r)
11 ]Aij Aji [p

(r)
10 ]Aij (1−Aji)[p

(r)
01 ](1−Aij)Aji [p

(r)
00 ](1−Aij) (1−Aji)

P (Aji)
× (1− µ)

+
[p

(a)
11 ]Aij Aji [p

(a)
10 ]Aij (1−Aji)[p

(a)
01 ](1−Aij)Aji [p

(a)
00 ](1−Aij) (1−Aji)

P (Aji)
× µ

(A11)

APPENDIX B: INFERENCE

Our goal is, given two mechanisms responsible for edge formation, first to determine the values of the parameters
Θ = {{uik}, {vik}, {wkq}, η, π, µ}, which determine the relationship between the anomaly indicator σ(ij) and the data,
and then, given those values, to estimate the indicator σ(ij) itself.

We have the posterior:

P (σ,Θ|A) =
P (A|σ,Θ)P (σ|µ)P (Θ)P (µ)

P (A)
. (B1)

Summing over all the possible indicators we have:

P (Θ|A) =
∑
σ

P (σ,Θ|A) , (B2)

which is the quantity that we need to maximize to extract the optimal Θ. It is more convenient to maximize its
logarithm, log-posterior, as the two maxima coincide. We use the Jensen’s inequality:

L(Θ) = logP (Θ|A) = log
∑
σ

P (σ,Θ|A) ≥
∑
σ

q(σ) log
P (σ,Θ|A)

q(σ)
, (B3)

where q(σ) is a variational distribution that must sum to 1. In fact, the exact equality happens when,

q(σ) =
P (σ,Θ|A)∑
σ P (σ,Θ|A)

, (B4)

this definition is also equivalent to maximizing the right-hand-side of Eq. (B3) w.r.t. q.

Finally, we need to maximize the log-posterior with respect to Θ to get the latent variables. This can be done
in an iterative way using Expectation-Maximization algorithm (EM), alternating between maximizing w.r.t. q
using Eq. (B4) and then maximazing Eq. (B23) w.r.t. Θ. In this work, we only fix priors for the σij (Bernoulli
distributions with parameter µ). For this variable we can thus estimate full posterior distributions; instead for the
other parameters our model outputs point estimates. This could be modified by suitably specifying priors also for
the reciprocity or community-related parameters. In this case, one could easily obtain maximum a posteriori (MAP)
estimates with calculations similar to those reported here.

Defining Q(ij) =
∑
σ(ij)

q(σ(ij))σ(ij), the expected value of σ(ij) over the variational distribution, we obtain,

L(Θ)= −
∑
σ

[q(σ) log q(σ)] +
∑
(i,j)

{
(1−Q(ij))

(
Aij f

(r)
ij +Aji f

(r)
ji +AijAji J

(r)
(ij) − logZ

(r)
(ij)

)
+

+Q(ij)

(
(Aij +Aji) f

(a) − logZ
(a)
(ij)

)
+Q(ij) logµ+ (1−Q(ij)) log(1− µ)

}
, (B5)
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and having Eqs. (7-10),

L(Θ)= −
∑
σ

[q(σ) log q(σ)] + (B6)

+
∑
(i,j)

{
(1−Q(ij))

(
Aij log

∑
k

uikvjqwkq +Aji log
∑
k

ujkviqwkq +AijAji log η

− log
[∑
k,q

uikvjqwkq +
∑
k,q

ujkviqwkq + η
∑
k,q

uikvjqwkq
∑
k,q

ujkviqwkq + 1
])

+Q(ij)

(
(Aij +Aji) log π − 2 log(π + 1)

)
+Q(ij) logµ+ (1−Q(ij)) log(1− µ)

}
. (B7)

Derivative of log-posterior w.r.t η,

∂L(Θ)

∂η
=

1

η

∑
(i,j)

(1−Q(ij))AijAji −
∑
(i,j)

(1−Q(ij))
λijλji

λij + λji + ηλijλji + 1

!
= 0 (B8)

leads to a fixed-point equation,

η = f(η) =

∑
(i,j)(1−Q(ij))AijAji∑

(i,j)(1−Q(ij))
[

λijλji

λij+λji+ηλijλji+1

] , (B9)

which can be solved numerically with fixed-point methods. Alternatively, one can use root-finding methods to solve
directly Eq. (B8) in η.

The equations for the remaining parameters need to be solved using Jensen’s inequality, and using log x < x to
obtain − log x > −x

L(Θ) ≥ −
∑
σ

[q(σ) log q(σ)] + (B10)

+
∑
(i,j)

(1−Q(ij))

(
Aij

∑
k,q

ρijkq log
(uikvjqwkq

ρijkq

)
+Aji

∑
k,q

ρjikq log
(ujkviqwkq

ρjikq

)
(B11)

+AijAji log η −
[∑
k,q

uikvjqwkq +
∑
k,q

ujkviqwkq + η
∑
k,q

uikvjqwkq
∑
k,q

ujkviqwkq + 1
])

+Q(ij)

(
(Aij +Aji) log π − 2 log(π + 1)

)
+Q(ij) logµ+ (1−Q(ij)) log(1− µ)

}
(B12)

and the equality holds when

ρijkq =
uikvjqwkq∑
k,q uikvjqwkq

. (B13)

We derive community parameters, for example we start by considering uik

∂L(Θ)

∂uik
=
∑
j

[
(1−Q(ij))

[
Aij

∑
q

ρijkq
1

uik
−
∑
q

vjqwkq −
∑
q

η vjqwkqλji

]]
!
= 0 (B14)

and we finally obtain

uik =

∑
jq(1−Q(ij))Aijρijkq∑

j

[∑
q(1−Q(ij)) (1+η λji) vjqwkq

λij+λji+ηλijλji+1

] . (B15)
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We find similar expression for vik and wkq:

vik =

∑
jq(1−Q(ij))Ajiρjiqk∑

j

[∑
q(1−Q(ij)) (1+η λij)ujqwqk

λij+λji+ηλijλji+1

] (B16)

wkq =

∑
i,j(1−Q(ij))Aijρijkq∑

i,j

[
(1−Q(ij)) (1+η λij)uikvjq

λij+λji+ηλijλji+1

] . (B17)

For the π it yields to the following:

π =

∑
(i,j)Q(ij) (Aij +Aji)∑

(i,j)Q(ij) (2−Aij −Aji)
. (B18)

Similarly for µ:

∂L(Θ)

∂µ
=
∑
(i,j)

1

µ
Q(ij) −

1

1− µ
∑
(i,j)

(1−Q(ij))
!
= 0 (B19)

yielding

µ =
1

N(N − 1)/2

∑
(i,j)

Q(ij). (B20)

To evaluate q(σ), we substitute the estimated parameters inside Eq. (B4):

q(σ) =

∏
(i,j)

[
exp

{(
Aij+Aji

)
f(a)

}
Z

(a)

(ij)

× µ

]σ(ij)
[

exp
{
Aijf

(r)
ij +Ajif

(r)
ji +AijAji J

(r)

(ij)

}
Z

(r)

(ij)

× (1− µ)

]1−σ(ij)

∑
σ(ij)

∏
(i,j)

[
exp

{(
Aij+Aji

)
f(a)

}
Z

(a)

(ij)

× µ

]σ(ij)
[

exp
{
Aijf

(r)
ij +Ajif

(r)
ji +AijAji J

(r)

(ij)

}
Z

(r)

(ij)

× (1− µ)

]1−σ(ij)

=
∏
(i,j)

[
exp

{(
Aij+Aji

)
f(a)

}
Z

(a)

(ij)

× µ

]σ(ij)
[

exp
{
Aijf

(r)
ij +Ajif

(r)
ji +AijAji J

(r)

(ij)

}
Z(ij)

× (1− µ)

]1−σ(ij)

∑
σ(ij)=0,1

[
exp

{(
Aij+Aji

)
f(a)

}
Z

(a)

(ij)

× µ

]σ(ij)
[

exp
{
Aijf

(r)
ij +Ajif

(r)
ji +AijAji J

(r)

(ij)

}
Z

(r)

(ij)

× (1− µ)

]1−σ(ij)

=
∏
(i,j)

Q
σ(ij)

(ij) (1−Q(ij))
(1−σ(ij)) , (B21)

where

Q(ij) =
exp[(Aij +Aji) f

(a) − logZ
(a)
(ij)]µ

exp[(Aij +Aji) f (a) − logZ
(a)
(ij))]µ+ exp[f

(r)
ij Aij + f

(r)
ji Aji + J

(r)
(ij)AijAji − logZ

(r)
(ij)] (1− µ)

=
exp[(Aij +Aji) log π − 2 log(π + 1)]µ

exp[(Aij +Aji) log π − 2 log(π + 1)]µ+ exp[Aij log λij +Aji log λji + log η AijAji − logZ
(r)
(ij)] (1− µ)

=

π(Aij+Aji) µ

Z
(a)

(ij)

π(Aij+Aji) µ

Z
(a)

(ij)

+
λ
Aij
ij λ

Aji
ji ηAij Aji (1−µ)

Z
(r)

(ij)

. (B22)

Notice that this is exactly the expected value w.r.t. the variational distribution as previously defined.
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1. Convergence criteria

The EM algorithm consists of randomly initializing u, v, w, η, π, µ, then iterating Eqs. B13, B22, B15-B17, B9, B18,
B20, until the convergence of the following log-posterior,

L(Θ)= logP (Θ|A) ≥
∑
σ

q(σ) log
P (σ,Θ|A)

q(σ)

= −
∑
σ

q(σ) log q(σ) +
∑
σ

q(σ) {logP (A|σ;Θ) + logP (σ|µ)}

= −
∑
σ

q(σ) log q(σ)

+
∑
σ(ij)

q(σ(ij))

∑
(ij)

[
(1− σ(ij))

(
Aij f

(r)
ij +Aji f

(r)
ji +AijAji J

(r)
(ij) − logZ

(r)
(ij)

)
+ σ(ij)

(
(Aij +Aji) f

(a) − logZ
(a)
(ij)

)
+σ(ij) logµ+ (1− σ(ij)) log(1− µ)

]}
= −

∑
(i,j)

[
Q(ij) logQ(ij) + (1−Q(ij)) log(1−Q(ij))

]
+
∑
(i,j)

{
(1−Q(ij))

(
f
(r)
ij Aij +Aji f

(r)
ji +Aij Aji J

(r)
(ij) − logZ

(r)
(ij)

)
+

+Q(ij)

(
(Aij +Aji) f

(a) − logZ
(a)
(ij)

)
+Q(ij) logµ+ (1−Q(ij)) log(1− µ)

}
+ const , (B23)

where we neglect const, constant terms due to the uniform priors. To calculate q(σ), we used Eq. (B21), i.e., a
Bernoulli distribution.

APPENDIX C: GENERATIVE MODEL

Being generative, the model can be used to generate synthetic networks with anomalies. For this, one should
sample the latent parameters Θ = (u, v, w, η, π, µ), then sample σ given the parameters. Finally, given the σ and
the latent parameters, the adjacency matrix A could be constructed. For a given set of community parameters as
the input parameters, [15, 22], the expected number of anomalous and non-anomalous edges are N2 µ π

(1+π) , and

E [M ] = (1 − µ)
∑
i,j

λij+ηλijλji

Z
(r)

(ij)

, respectively. Assuming a desired total number of edges E, we can thus multiply

π, µ and M by suitable sparsity constants that tune: i) the ratio of anomalous edges to the total number of edges,
ρa = N2 µ π

(1+π)/(N
2 µ π

(1+π) + (1− µ)E [M ]) ∈ [0, 1]; ii) the success rate of anomalous edges π. Once these two are
fixed, the remaining sparsity parameter for the matrix M , is estimated as:

E (1− ρa) = (1− µ)
∑
i,j

ζ λij + η ζ λij ζ λji
ζ λij + ζ λji + η ζ λij ζ λji + 1

(C1)

which can be solved with root-finding methods.
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APPENDIX D: RESULTS ON SYNTHETIC NETWORKS

(a) (b)

(c) (d)

(e) (f)

log η = 0 log η = 3

FIG. 6: Community detection, link prediction, and anomaly detection on synthetic network datasets.
(a)-(b) We compare the performance of CRAD against JointCrep and BPMF algorithms in community detection, as
measured by cosine similarity (CS); and (c)-(d) in link prediction tasks, as measured by AUC on held-out data. In
addition, (e)-(f) we test the ability to detect anomalies against a model that does not include a reciprocity effect
(ACD), as measured by the AUC on a binary dataset that contains what edges are regular and what are anomalous.
The datasets have N = 500, average degree 〈k〉 = 60, K = 3. The first column is for networks generated without
reciprocity, log η = 0, while the second column is for networks with positive reciprocity, log η = 3. In the x-axis we
vary ρa, the ratio of anomalous edges over the total number of edges. Lines and shades around them are averages
and standard deviations over 10 network samples, respectively.
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APPENDIX E: REAL DATA: DATASET DESCRIPTION

Table I provides a summary of the key characteristics of the studied datasets. The dataset of UC Irvine messages
and Online dating (POK0) have undergone pre-processing that involved the removal of self-loops, retaining only nodes
with both incoming and outgoing edges, and using only the giant connected components.

TABLE I: Real-world datasets description.

Network Abbreviation N E 〈k〉 reciprocity Ref.
Vampire bat vampire bat 19 103 10.8 0.64 [24]
A Nicaraguan community Nicaraguan 108 1517 14.05 0.11 [25]
UC Irvine messages uc-social 1302 19044 29.3 0.68 [26]
Online dating POK 3562 18098 10.2 0.78 [39]
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