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Many complex systems change their structure over time, in these cases dynamic networks can
provide a richer representation of such phenomena. As a consequence, many inference methods
have been generalized to the dynamic case with the aim to model dynamic interactions. Particular
interest has been devoted to extend the stochastic block model and its variant, to capture com-
munity structure as the network changes in time. While these models assume that edge formation
depends only on the community memberships, recent work for static networks show the importance
to include additional parameters capturing structural properties, as reciprocity for instance. Re-
markably, these models are capable of generating more realistic network representations than those
that only consider community membership. To this aim, we present a probabilistic generative model
with hidden variables that integrates reciprocity and communities as structural information of net-
works that evolve in time. The model assumes a fundamental order in observing reciprocal data,
that is an edge is observed, conditional on its reciprocated edge in the past. We deploy a Markovian
approach to construct the network’s transition matrix between time steps and parameters’ infer-
ence is performed with an Expectation-Maximization algorithm that leads to high computational
efficiency because it exploits the sparsity of the dataset. We test the performance of the model on
synthetic dynamical networks, as well as on real networks of citations and email datasets. We show
that our model captures the reciprocity of real networks better than standard models with only
community structure, while performing well at link prediction tasks.

I. Introduction

Many real networks are dynamical, i.e., the pattern
of interactions between their nodes vary over time, e.g.,
network of exchanged emails in a company. The abun-
dance of such datasets and the development of optimal
numerical methods have led to a growing number of stud-
ies in this field [1–4]. In addition, interactions between
nodes can be reciprocated, e.g., the people whom one
retweets and the number of times she retweets them vary
over time; so do the papers that researchers cite in their
manuscripts and papers that cite one’s scientific output.
This latter issue has received little attention in previous
studies.

Among the main approaches to study these systems,
latent variable models assume that the existence of an
edge between any pair of nodes is independent of other
nodes, and is conditional on some latent variables which
incorporate the hidden structure of the network. These
techniques mainly focus on community membership as
the main relevant latent variable, e.g., in the case of ci-
tations, the people who cite each other’s works, inad-
vertently form a community. The stochastic block model
(SBM) [5–7] and its variants provide flexible network gen-
erative models [8, 9]. In this framework, nodes are ini-
tially partitioned into communities, then edges are cre-
ated between nodes, based on their community member-
ship. There are several variants of dynamical equivalents
of stochastic block model (DSBM) [10–14] which capture
transition of community membership over time, reflect-

∗ hadiseh.safdari@tuebingen.mpg.de
† martina.contisciani@tuebingen.mpg.de
‡ caterina.debacco@tuebingen.mpg.de

ing the evolution of edge formation. Peixoto and Ros-
vall [15], and Matias et al. [16] develop a non-parametric
temporal stochastic block model. Gauvin et al. [17] con-
sider non-negative tensor factorization, where communi-
ties are static but the affinity matrix changes over time.
Bovet et al. [18] use flow of random walkers co-evolving
in the dynamic network to define communities. Various
methods have been used to address whether the com-
munity membership or connectivity parameters could
change over time, see [19] for a review. For instance,
one could assume that communities are fixed in time but
the connectivity parameters across groups changes, as in
[11, 17], or that communities change in time [10, 20–22].

In Zhang et al. [12], the authors extend some of the
popular methods of modeling network structure, e.g.,
SBM, to represent dynamic networks. The main idea
behind their Markovian approach is to find transition
rates of appearance and disappearance of edges over time.
Based on these rates, they were able to calculate the av-
erage probability of edges over all time steps, hence, they
estimate a steady state probability distribution for each
network model, depending on its structural parameters.
Although the approach followed in [12] is efficient and
analytically grounded, it was developed for models that
incorporate communities as the only latent variable.

Nevertheless, in directed real-world networks, commu-
nity membership may not be the only factor influencing
network structure. Reciprocity, i.e., the tendency of a
pair of nodes to form edges on both directions, has been
subject of many studies [23–25] as a crucial factor to de-
termine the structure of networks, in particular in social
networks. Bartolucci et al. [26] assume local conditional
independence between pairs of edges, i.e., dyads, and ex-
tend the SBM to account for the reciprocal patterns in
directed dynamical networks. Furthermore, they estab-
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lished various specifications of the proposed model cor-
responding to different reciprocal assumptions.

Recently, a generative model (CRep) has been intro-
duced that, in addition to community membership, in-
cludes reciprocity as latent variable that dictates forma-
tion of edges between the nodes [25]. In other words,
the appearance of a directed edge from node i to j not
only depends on the community that the nodes belong
to, but also is affected by the existence of the edge from
j to i. In the case of citation network, it is more likely
for an author to cite those other who already cited her,
implying overlapping research areas.

In this work, following the approach in [12], we ex-
tend CRep and propose a continuous-time Markov pro-
cess model for dynamic networks (DynCRep). Observing
the system at discrete points in time, at each time step
the transition rates of appearance and disappearance of a
directed edge between two nodes depends on the current
community membership of the nodes, as well as on the
existence of a reciprocated edge between them.

We validate the applicability of the proposed model
and its inference approach by performing experiments
on real and synthetic networks for community detection
and link prediction. We apply the model to synthetic
datasets and observe that DynCRep shows a reasonable
performance in terms of link prediction. Moreover, we
test the model performance on real-world datasets in the
domain of social and online communication to reproduce
reciprocity, with promising results.

II. Model

In our model, the temporally evolving network is cap-
tured in snapshots taken at fixed intervals, from t = 0
to T + 1. A(t) represents the dynamic adjacency matrix
of the network, where a non-zero value of Aij(t) repre-
sents a weighted edge from i to node j at time t, and
Aij(t) = 0 denotes no interaction. We assume that the
total number of nodes is fixed over time, i.e., new nodes
do not enter into the network, and nodes do not leave
it; instead, existing edges can appear and disappear. We
focus on directed, and weighted networks.

A matrix w(t) of dimensions K × K determines the
evolving structure of the K communities over time and
we refer to w(t) as the affinity matrix. Different assump-
tions about w(t) result in communities with different
structures. For instance, in the case of diagonal entries
being greater than off-diagonal ones, communities are as-
sortative – that is, individuals are more inclined towards
intra-community interactions than inter-community in-
teractions. The K-dimensional vectors ui(t) and vi(t)
denote the out-going and in-coming communities at time
step t, respectively.

Here, we keep the community membership constant
over time; hence, we drop the notion of time dependency.
We develop the model in two different varieties: 1) the
affinity matrix varies over time (w-DYN), i.e., the connec-

tivity pattern between communities changes over time,
for instance, a group of nodes which form a community
at time step t could be peripheral nodes at another time
step [11], and 2) the affinity matrix also remains static
(w-STATIC).

Following the continuous-time Markov process ap-
proach in [12], we assume that networks evolve on the
real-valued times; hence, the appearance and disappear-
ance of the edges are continuous parameters. However,
we observe the network at discrete time steps. At each
time step, a Poisson distribution governs the existence
of edges between nodes such that an edge between two
nodes is formed at a rate λ̂ij(t). This rate depends on
both the community that nodes belong to, and the exis-
tence of the reciprocated tie at the previous time step:

λ̂ij(t)= λij(t) + η Aji(t− 1)

≡
∑
k,q

uikvjq wkq(t) + η Aji(t− 1) , (1)

where η as a hyperparameter regulates the reciprocity
effects, similarly as in [25]. The difference between Eq. 1
and the edge probability in [25] is that the dependency
on the reciprocated tie is on the previous time step, while
standard CRep considers only the same time t, being an
approach valid for static networks. Furthermore, an edge
could disappear with rate µ.

A. Dynamic CRep

The aim of this study is to infer the latent parame-
ters of the model, namely, Θ ≡ {u, v, w, η, µ}, given the
adjacency matrix observed at each time step. To this
end, we perform this inference task by maximizing the
log-likelihood. Given Θ, all the pairs of nodes are con-
ditionally independent; as a result, the joint-probability
of the node-pairs could be approximated by a factorized
form. Here, we develop a Markov process, according to
which, at every time step, the probability of edges de-
pends only on the previous time step:

P ({A(t)}|Θ)= P ({A(t)}|{A(t− 1)},Θ)

=
∏
i,j

{
P (Aij(0)|Aji(0),Θ)

×
T∏

t=1

{P (Aij(t)|Aij(t− 1), Aji(t− 1),Θ)}

}
.

(2)

We further assume that at the initial time step the prob-
ability Aij(0) of an edge between two nodes follows a
Poisson distribution with mean λ̂ij = λij(0), i.e., there
is no reciprocated edge in the past:

P (Aij(0)|Aji(0),Θ) =
eλij(0)λij(0)Aij(0)

Aij(0)!
. (3)
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At each time-step, edges appear with rate λ̂ij(t), and
disappear with rate µ. We follow an approach similar to
that of Zhang et al. [12] and calculate the probability
of the existence of edges by solving a master equation.
Defining pkij(t) as the probability of having k edges, i.e.,
an edge with the weight equal to k, between nodes i, j at
time t, this quantity satisfies the following master equa-
tion:

dpkij(t)

dt
=

λ̂ij(t) p
k−1
ij (t) + (k + 1)µpk+1

ij (t)−
(
λ̂ij(t) + kµ

)
pkij(t) .

(4)

To solve this equation, we use a generating function ap-
proach [27], by defining g(z, t) =

∑∞
k=0 p

k(t)zk. The so-
lution for the generating function,

g(z, t) = f
[
(z − 1)e−µt

]
e

(z−1)λ̂ij(t)

µ , (5)

could be expanded in terms of z to give us ptij (more
details in Sec. S1). There are four possible transitions
from time t− 1 to t: 1) there is no edge neither at time
t − 1, nor at t; 2) the appearance of an edge from non-
edge, 3) disappearance of an existing edge, and 4) an
existing edge remains; with the following probabilities,
respectively,

p0→0 = e−β(λij(t)+η Aji(t))

p0→1 = β(λij(t) + η Aji(t))e
−β(λij(t)+η Aji(t))

p1→0 = βe−β(λij(t)+η Aji(t))

p1→1 = (1− β)e−β(λij(t)+η Aji(t)), (6)

where β = 1 − e−µ. This leads to the following time-
dependent, log-likelihood:

L(T,Θ)= log[P ({A(t)}|{A(t− 1)},Θ)]

=
∑
i,j

{
log
[
e−λij(t)λij(t)

Aij(0)
]

+

T∑
t=1

log
[
e−β(λij(t)+η Aji(t))

× [β (λij(t) + η Aji(t))]
(1−Aij(t−1))Aij(t)

×βAij(t−1)(1−Aij(t)) × (1− β)Aij(t−1)Aij(t)
]}

. (7)

Algorithm 1 DynCRep (w-DYN): EM algorithm.
Input: network A(t) = {Aij(t)}Ni,j=1,

number of communities K.
Output: membership u = [uik] , v = [vik]; network

affinity matrix w(t) = [wkq(t)]; reciprocity pa-
rameter η; edge disappearance rate β(t).

Initialize u, v, w(t), η, β(t) at random.
Repeat until L converges:
1. Calculate ρ1(t) and φ(t) (E-step):

ρ
(1)
ij (t) =

λij(t)

λij(t) + η Aji(t)
, ρ

(2)
ij (t) =

η Aji(t)

λij(t) + η Aji(t)
,

φijkq(t) =
uikvjqwkq(t)∑
k,q uikvjqwkq(t)

.

2. Update parameters Θ (M-step):
i) for each node i and community k update mem-

berships:

uik =
a− 1 +

∑
j,q,t ρ

(1)
ij (t)φijkq(t) Âij(t)

b+
∑
j,q vjq

∑T
t=0 β̂(t)wkq(t)

vik =
a− 1 +

∑
j,q,t ρ

(1)
ij (t)φjiqk(t) Âij(t)

b+
∑
j,q ujq

∑T
t=0 β̂(t)wkq(t)

ii) for each pair (k, q) update affinity matrix:

wkq(t) =

∑
i,j ρ

(1)
ij (t)φijkq(t)Âij(t)∑
i,j uik vjqβ̂(t)

iii) update reciprocity parameter:

η =

∑
i,j,t ρ

(2)
ij (t)Âij(t)∑

i,j,t=1 β̂(t)Aji(t− 1)

We add parameters’ regularization by assuming
Gamma-distributed priors for the membership vectors:

P (uik; a, b) ∝ ua−1ik e−buik , (8)

where a ≥ 1, to ensure the maximization of the log-
likelihood (the second derivative must be negative), sim-
ilarly for the vik. This adds new terms to the log-
likelihood:

L(T,Θ) = L(T,Θ) + (a− 1)
∑
i,k

log uik − b
∑
ik

uik

+(a− 1)
∑
i,k

log vik − b
∑
ik

vik . (9)

In the experiments below we set the values of the hyper-
priors to enforce sparsity, i.e., a = 1.5, b = 10.
Maximizing L(T,Θ) requires taking the derivative of Eq.
(9) w.r.t. each parameter individually and setting them
to zero. Because the summations in the logarithm render
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the calculations difficult, we employ a variational approx-
imation using Jensen’s inequality. Inference is then per-
formed using the Expectation-Maximization algorithm
(EM); details are provided in Sec. S1A.

Hitherto, we have included all the dependencies on the
reciprocated edge Aji(t− 1) by considering the previous
time step t − 1. However, the model still applies if we
incorporate the reciprocated edge at the same time step,
i.e., considering Aji(t). This choice may depend on the
application itself based on the expectations and insight
of the practitioner from the reciprocity effects. Alterna-
tively, one can choose between these two options with
model-selection criteria. In our experiments on real data
we deployed them both, and presented the version that
performs best in cross-validation tasks (Sec. S5A).

We continue with two specifications of the model with
different assumptions on the temporal evolution of the
affinity matrix. In the first approach, w-DYN, the affin-
ity matrix is treated as a time-dependent variable; while
the community membership vectors, ui, vi, are kept static
over time. Notice that a similar scenario could be ob-
tained by fixing w and changing ui, vi in time [11], our
model can be easily adapted to accommodate this alter-
native interpretation. Our model assumes fixed number
of communities K. As we consider a mixed-membership
model, we have the flexibility of allowing nodes to be-
long to various communities and with various intensities,
thus allowing to capture the likelihood of the data well
by effectively changing how an entry uik or vik impacts
the magnitude of λij(t) via w(t) in the w-DYN scenario,
while keeping K constant.

In the second scenario, w-STATIC, the affinity matrix
is kept static as well. The purpose of considering these
scenarios is to make the model flexible in dealing with
various community structures (see Secs. S2 to S4 for more
details on each scenarios). Notice that in the case of
w-STATIC, although all the latent variables are fixed in
time, the network can still evolve, as edges appear and
disappear based on the parameters β and µ. This is also
the case for the Markov model (without reciprocity) in
[12].

For instance, the EM algorithm for w-STATIC yields:

uik =
a− 1 +

∑
j,q,t ρ

(1)
ij (t)φijkq Âij(t)

b+
∑
j,q vjq wkq (1 + β T )

(10)

vjq =
a− 1 +

∑
i,k,t ρ

(1)
ij (t)φijkq Âij(t)

b+
∑
i,k uik wkq (1 + β T )

(11)

wkq =

∑
i,j,t ρ

(1)
ij (t)φijkqÂij(t)∑

i,j uik vjq (1 + β T )
(12)

η =

∑
i,j,t ρ

(2)
ij (t)Âij(t)∑

i,j

∑T
t=1 β Aji(t− 1)

, (13)

where we defined Âij(t) = Aij(t)(1−Aij(t− 1)) if t > 0,
in which Âij(0) = Aij(0) and we have the variational

distributions

ρ
(1)
ij (t) =

λij
λij + η Aji(t− 1)

(14)

ρ
(2)
ij (t) =

η Aji(t− 1)

λij + η Aji(t− 1)
(15)

φijkq =
uikvjqwkq∑
k,q uikvjqwkq

. (16)

The parameter β has no closed-form update:

−β

[
T
∑
i,j

λij +

t=T∑
i,j,t=1

(ηAji(t− 1)) +
1

1− βAij(t− 1)Aij(t)

]

+

t=T∑
i,j,t=1

[
Â(t) +Aij(t− 1)(1−Aij(t))

]
= 0 ,

(17)

but this equation can be solved numerically using root-
finding methods. The algorithm proceeds by randomly
initializing the parameters u, v, w, η, β; then we esti-
mate the variational distributions ρ(1), ρ(2), and φ, using
Eq. (14) to (16) (E-step), while keeping the parameters
fixed. In the next step (M-step), we update the param-
eters, while keeping ρ(1), ρ(2) and φ fixed. This proce-
dure is repeated until the convergence of the likelihood
in Eq. (9). An overview of the algorithm is described in
Algorithm 1.

III. Applications

A. Synthetic networks: AUC

Having explained the nots and bolts of our model,
we now turn to its application on dynamic network
data. We start by considering synthetic networks
generated by Sec. IIA with known community structure
and reciprocity. We assess the ability of the model in
predicting the network at future time steps using past
observations. We look in particular at the impact of
reciprocity in determining edges, by generating networks
with varying η ∈ {0.05, 0.2, 0.5}, while keeping the other
parameters fixed.
For the tests reported here we use N = 500, initial
average degree 〈k〉 = 5, and β = 0.2. We generate
K = 3 hard communities of equal size with assortative
structure. Having fixed the parameters, we generate 20
samples of networks for each of the three values of η.
For each network we generate an initial state followed
by up to T = 6 further snapshots. The initial state
is generated using only the community structure (no
reciprocity) using Eq. (3). The successive snapshots are
generated according to the instructions of Sec. II A. In
this study, to test the ability of our model in capturing
the dynamical features, we generate the first three time
snapshots (T = 1, 2, 3) with an assortative community
structure and the rest of the snapshots (T = 4, 5, 6) with
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a)

b)

FIG. 1: Predicting future evolution. We report the AUC values on held-out experiments where we train the
model on A(0), . . . , A(T − 1) and predict the network A(T ). Higher values means better prediction. Networks are
generated as explained in Sec. III, with N = 500, average degree 〈k〉 = 5, β = 0.2, K = 3. The three plots are results
for η ∈ {0.05, 0.2, 0.5}. The Markers and the error bars are the means and standard deviations over 20 network
samples, respectively. a) w-DYN; b) w-STATIC.

a disassortative community structure.

For each time step t ∈ [1, T ], we hide the individual
snapshot A(t) and fit the data using the previous snap-
shots A(0), . . . , A(t − 1). We test whether a model that
accounts for reciprocity is able to successfully predict the
network’s evolution. Success is measured using the area
under the curve (AUC), i.e., the probability that a ran-
domly selected edge has higher expected value than a
randomly selected non-existing edge. A value of 1 means
perfect reconstruction, while 0.5 is pure random chance.
The expected value of an edge is computed using:

E [Aij(t)] =

{
p0→1

p0→1+p0→0
if Aij(t− 1) = 0

p1→1

p1→1+p1→0
if Aij(t− 1) = 1

(18)

=

{
β(t)(λij(t) + ηAji(t− 1)) if Aij(t− 1) = 0

1− β(t) if Aij(t− 1) = 1
.

Notice that while the expected value at time t uses
explicitly only the network at the previous time step, all
the parameters are inferred using the whole network his-
tory, i.e., the model is trained with {A(0), . . . , A(t− 1)}.
We compare with a model that does not account for
reciprocity, i.e., our model with η = 0 (DynCRep0) [25].

Figure 1 shows the results of these tests. As we can
see, the ability to predict future edges is greater for a
model that accounts for reciprocity, and the performance
gap increases for higher values of η. This gap is partially

offset by increasing the number of snapshots, as both
the models have access to more information to make
their estimates. Remarkably, DynCRep has stronger
performance also in the low-reciprocity regime, η = 0.05.
This cannot be clearly seen by looking at Fig. 1, as the
mean AUC of the two models are within the error bars
due to random fluctuations of the network structure
across samples. Instead, the stronger performance of
DynCRep in the low-reciprocity regime is revealed by
looking at the percentage of samples where DynCRep
has higher AUC than DynCRep0, on a trial-by-trial case
(see Table I for details). While w-STATIC, the static
version of the algorithm, performs slightly better than
its non-reciprocated version, with larger performance
gap at later times, w-DYN, the algorithm with time-
varying affinity matrix, outperforms its non-reciprocated
equivalent at all time steps.

Although both variants of the algorithm give better
performance than their non-reciprocated version, it
could be seen from Fig. 1 that w-DYN is more robust in
link prediction tasks as η increases, and as the planted
evolving structure of the affinity matrix changes from
assortative to disassortative over time (T = 4, 5, 6).
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TABLE I: Edge prediction in synthetic networks.
The stronger performance of DynCRep in the
low-reciprocity regime, η = 0.05, is revealed by looking
at the percentage of samples where DynCRep has higher
AUC than DynCRep0, on a trial-by-trial case, over 20
trials.

w-DYN w-STATIC

T DynCRep DynCRep0 DynCRep DynCRep0

1 0.0 0.0 57.0 43.0
2 71.0 29.0 43.0 57.0
3 86.0 14.0 38.0 62.0
4 67.0 33.0 43.0 57.0
5 71.0 29.0 52.0 48.0
6 81.0 19.0 57.0 43.0

B. Real world data: reciprocity/AUC

To evaluate the capability of our proposed model in
retrieving network features,  we apply the model to real
world datasets. In this case, we first apply the infer-
ence algorithm to each time snapshot of the dynamic
real dataset and learn the network’s latent variables, i.e.,
Θ. Then, we use these latent variables as the input for
the generative model, Sec. III, to generate dynamic syn-
thetic networks similar to the fitted real datasets. Thus,
we can compare dynamic synthetic networks, here 5 sam-
ples, and the original network. In this paper, we study
the performance of our model in reproducing reciprocity
as a significant structural parameter of the network. We
implement our algorithm on two social and communica-
tion datasets, namely, Email Eu core network [28] and
Statistics Citation Networks [29] (see Sec. S6B for de-
tails on data pre-processing).

EU email network

Email-Eu-core network (EU) is constructed from inter-
nal emails exchanged between members of a large Euro-
pean research institution. At each time step, there is a
directed edge from i to j, if i sent an email to j. Reci-
procity may play a role in that receiving incoming emails
may, or not, trigger a response email, similarly to other
types of social communication [30]. The recorded dataset
spans over a period of 803 days. However, we studied the
dynamics of the dataset by dividing it in both daily and
monthly durations. In the first case, we divide the edges
in daily intervals (EU-daily); then select the snapshots
from 5 consecutive days, randomly. In the latter case,
the intervals are monthly; we select the snapshots from
the first recorded year (EU-monthly).

Figure 2 shows the performance of w-DYN and
w-STATIC versions of DynCRep in reproducing the reci-
procity of the EU-daily network. As expected in email
networks, the reciprocity is high in this case; hence,
w-DYN and w-STATIC perform similarly in reproducing
reciprocity. It is noticeable that the ability of reproduc-
ing reciprocity may change depending on how the net-
work is built. For instance, if we consider the monthly

time steps, EU-monthly network, we observe a different
performance, see appendix S6B.

Figure 3 indicates the captured AUCs, measuring per-
formance in link prediction tasks. The AUC is calculated
as described in Sec. III A. We can notice the improvement
over the time snapshots, and DynCRep tends to perform
slightly better. Therefore by having access to the his-
tory of the dataset and accounting for reciprocity we can
achieve better results in predicting future connections.

It is worth mentioning that we performed the experi-
ments for different values of the number of communities;
however, the results do not show high sensitivity to this
parameter. Therefore, we fixed K = 4 for the EU net-
work, equivalent to the number of departments in the
corresponding institute.

Statistics Citation dataset

The second example of an empirical dataset is the Ci-
tation networks for statisticians, which is based on the
research papers published in four of the top journals in
statistics from 2003 to the first half of 2012. We construct
a network by selecting a sample of the data from 2003 to
2007 and dividing it into annual intervals. This way we
will have a network of citations over 4 years, where nodes
are authors and an edge from nodes i to j at time step
T represents that i cites j’s papers in that year. In this
system, we may expect that reciprocity plays a role in
that receiving a citation may trigger a citation back.

Despite the fact that the reciprocity in this dataset
is much lower than EU-daily dataset, Fig. 4 shows that
we are able to capture it competitively. In addition, al-
though the two versions outperform each others at differ-
ent time steps, they still behave similarly in reproducing
the reciprocity. Moreover, in both empirical datasets,
the best performance is obtained for the case that recip-
rocated edges presented at the same time step were used
in the model.

As it could be seen from Fig. 5, AUC values are al-
ways higher for DynCRep, showing that accounting for
reciprocity improves link prediction tasks also for this
dataset. It should be noted that, at each time step T we
calculate AUC by having access to the edges up to time
T − 1, then predicting edges at time T . Hence, the AUC
cannot be calculated for the first time step. In this case
we fix K = 3, the minimum number of communities with
the highest performance, i.e., we perform 5-fold cross val-
idation [25] to calculate the value of AUC, then we choose
K as the number of communities with the highest value
for AUC.

IV. Conclusion

In this work, we study reciprocity in dynamic networks.
In reality, many datasets, e.g., networks of friendship,
of gene expression patterns or communication networks,
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FIG. 2: Reproducing the reciprocity of EU-daily
network. Sampled networks were generated based on
the inferred parameters fitted to the EU-daily network
[28]. The networks are generated as explained in
Sec. III, with N and average degree 〈k〉 as of the real
datasets; K = 4. The markers and the error bars are
the means and standard deviations over 5 samples of
synthetic networks, respectively.

FIG. 3: Predicting future evolution in the
EU-daily dataset. AUC results for EU-daily dataset
for 5 consecutive days, selected randomly. The number
of community is fixed to K = 4. The error bars are
smaller than marker size.

describe interactions that evolve over time, thus making
them unsuitable objects of analysis for aggregate meth-
ods. In addition, the interactions in these networks might
not simply change over time, but their evolution could
also be affected by their past reciprocated interactions;
generally, such reciprocal interactions have received little
attention as additional drivers of this dynamics.

To remedy this problem, we combine insights from
previous works to incorporate reciprocity into a gener-
ative model approach with latent community structure.
Specifically , we extend the assumptions formulated in
[25] to situations where networks change in time. For
this, we consider a Markovian transition matrix which

FIG. 4: Reproducing the reciprocity of the
Statistics citation dataset. Sampled networks were
generated based on the inferred parameters of the
Statistics Citation dataset [29]. The networks are
generated as explained in Sec. III, with N and average
degree 〈k〉 as of the real datasets; K = 3. Markers and
bars are the means and standard deviations over 5
generated synthetic networks, respectively. The network
is based on annual citations during four years, from
2010 to 2013.

FIG. 5: Predicting future evolution in the
Statistics citation datasets. AUC results for the
citation network with K = 3. The error bars are too
small to be seen.

governs the evolution of the parameters over time snap-
shots. Being a generative model, our approach can be
used to build dynamic synthetic networks, with desired
reciprocity and community structure. Its algorithmic
implementation is based on an efficient EM algorithm,
which can be applied to large systems. As we assume a
chronological order in observing the reciprocated edges,
we can estimate the joint probability distribution as a
factorized distribution of time steps.

We consider two varieties of our model. In one case,
community membership vectors remain static over time
and only the affinity matrix contains temporal informa-
tion. In the other case, the affinity matrix is treated



8

as a static parameter, similarly as the community mem-
berships; in both cases, reciprocity parameter and the
rate of edge removal are kept static. These two scenar-
ios enable us to thoroughly analyze the model and its
performance in networks with different interaction pat-
terns. For instance, in the case of a non-homogeneous
community structure over time, the first version would
be a more suitable approach, since it could capture the
evolving community structures.

There are a number of directions in which this model
could be extended. To capture more realistic properties
of the real world datasets, we can generalize the model to
the case of multilayered networks, where nodes can have
more than one type of interaction. For instance, in a
social network, an individual can have connections based
on friendship, as well as her business affiliations.

In addition, considering a node related reciprocity pa-
rameter instead of a global reciprocity parameter could
improve the applicability of the model. We have focused
here on the case where edges change in time, but one can
envisage situations where nodes appear and disappear
as well. This would also be a natural model extension.
Finally, we considered here reciprocity as main network
structural property, but similar investigations can be per-
formed for other properties involving more that one pair
of nodes, as triadic closure or transitivity.
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Supporting Information (SI)

S1. Master Equation

To solve the master equation in Eq. 4, we multiply both sides by zk and sum over k; then defining the generating
function g(z, t) =

∑∞
k=0 p

k(t)zk, we get,

∂g(z, t)

∂t
= λ̂ij(t) z g(z, t) + µ

∂g(z, t)

∂z
− λ̂ij(t) g(z, t)− µ z ∂g(z, t)

∂z

= (z − 1)

[
λ̂ij(t) g(z, t)− µ ∂g(z, t)

∂z

]
(S1)

By replacing time dependent λ̂ij(t) in Eq. S1, by its expected value, we reach the following relation for g(z, t),

g(z, t) = f
[
(z − 1)e−µt

]
e

(z−1)λ̂ij
µ , (S2)

where f(x) is any once-differentiable function of its argument satisfying f(0) = 1 [12].
We can assume that at t = 0 there was no edges between two specific nodes, hence by setting t = 0 in Eq. S2, we

find f(x) = e−
x
µ λ̂ij . We assume the mean as λ̂ij

µ = λij + η Aji. Therefore, at t = 1,

g(z, 1)= exp
{

(z − 1)(λij + η Aji)(1− e−µ)
}

= exp {β (z − 1)(λij +Aji)} (S3)

A. Likelihood Maximization

L(t,Θ)=
∑
i,j

−
 K∑
k,q=1

uikvjqwkq

+Aij(0) log

 K∑
k,q=1

uikvjqwkq


+

T∑
t=1

−β
 K∑
k,q=1

uikvjqwkq + ηAji(t− 1)

+ (1−Aij(t− 1))Aij(t) log

β
 K∑
k,q=1

uikvjqwkq + η Aji(t− 1)


+Aij(t− 1)(1−Aij(t)) log β +Aij(t− 1)Aij(t) log[1− β]]} (S4)

To simplify notations and the code implementation, we define:

Âij(t) =

{
Aij(t)(1−Aij(t− 1)) t > 0

Aij(0) t = 0
(S5)

β̂(t) =

{
β t > 0

1 t = 0
. (S6)

With these, the log-likelihood becomes:

L(T,Θ)=
∑
i,j

−
T∑
t=0

β̂(t)

∑
k,q

uikvjqwkq + ηAji(t− 1)

+

T∑
t=0

Âij(t) log

∑
k,q

uikvjqwkq + η Aji(t− 1)

 +

+

T∑
t=0

Âij(t) log β̂(t) +
∑
t=1

[Aij(t− 1)(1−Aij(t)) log β +Aij(t− 1)Aij(t) log(1− β)]

}
, (S7)

and we assume that Aji(−1) = 0.
Because of the summation over variables in the logarithm, in eq. 9, maximization is not achievable; hence, we apply



11

Jensen’s inequality, log x̄ ≥ log x, which provides us a lower bound for log-likelihood to maximize.

log
[
λ0ij + η Aji(t− 1)

]
≥ ρ(1)ij (t) log

λ0ij

ρ
(1)
ij (t)

+ ρ
(2)
ij (t) log

η Aji(t− 1)

ρ
(2)
ij (t)

(S8)

The equality will be satisfied when,

ρ
(1)
ij (t) =

λ0ij
λ0ij + η Aji(t− 1)

, ρ
(2)
ij (t) =

η Aji(t− 1)

λ0ij + η Aji(t− 1)
. (S9)

As a result, the log-likelihood could be written in terms of these probability distributions,

L(T,Θ)≈
∑
i,j

−
T∑
t=0

β̂(t)

∑
k,q

uikvjqwkq + ηAji(t− 1)


+

T∑
t=0

[
Âij(t)

(
ρ
(1)
ij (t) log

[∑
k,q uikvjqwkq

ρ
(1)
ij (t)

]
+ ρ

(2)
ij (t) log

[
β η Aji(t)

ρ
(2)
ij (t)

])]
+

T∑
t=0

Âij(t) β̂(t)

+

T∑
t=1

[Aij(t− 1)(1−Aij(t)) log β +Aij(t− 1)Aij(t) log[1− β]]

}
. (S10)

To deal with the summation in the log, we again apply Jensen’s Inequality,

log β
∑
k,q

uikvjqwkq ≥
∑
k,q

φijkq log β uikvjqwkq −
∑
k,q

φijkq log φijkq. (S11)

The equality will be established when,

φijkq =
uikvjqwkq∑
k,q uikvjqwkq

. (S12)

It leads to the log-likelihood as a function of the probability distributions,

L(T,Θ)=
∑
i,j

−
T∑
t=0

β̂(t)

∑
k,q

uikvjqwkq + ηAji(t− 1)

+

T∑
t=0

Âij(t)

ρ(1)ij (t)
∑
k,q

φi,j,k,q log uikvjqwkq

−ρ(1)ij (t)
∑
k,q

φi,j,k,q log φi,j,k,q + ρ
(2)
ij (t) log[η Aji(t− 1)]− ρ(1)ij (t) log ρ

(1)
ij (t)− ρ(2)ij (t) log ρ2(t)

+

T∑
t=0

Âij(t) log β̂(t)

+

T∑
t=1

[Aij(t− 1)(1−Aij(t)) log β +Aij(t− 1)Aij(t) log(1− β)]

}
, (S13)
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S2. Static parameters (w-STATIC)

Assuming static u, v, w, η and defining Âij(t) = Aij(t)(1−Aij(t−1)) if t > 0, Âij(0) = Aij(0) and β̂(t) = 1 if t = 0,
β̂(t) = β if t > 0, we obtain:

uik =
a− 1 +

∑
j,q,t ρ

(1)
ij (t)φijkq Âij(t)

b+
∑
j,q,t vjq wkq β̂(t)

=
a− 1 +

∑
j,q,t ρ

(1)
ij (t)φijkq Âij(t)

b+
∑
j,q vjq wkq (1 + β T )

(S14)

vjq =
a− 1 +

∑
i,k,t ρ

(1)
ij (t)φijkq Âij(t)

b+
∑
i,k,t uik wkq β̂(t)

=
a− 1 +

∑
i,k,t ρ

(1)
ij (t)φijkq Âij(t)

b+
∑
i,k uik wkq (1 + β T )

(S15)

wkq =

∑
i,j,t ρ

(1)
ij (t)φijkqÂij(t)∑

i,j,t uik vjq β̂(t)
=

∑
i,j,t ρ

(1)
ij (t)φijkqÂij(t)∑

i,j uik vjq (1 + β T )
(S16)

η =

∑
i,j,t ρ

(2)
ij (t)Âij(t)∑

i,j

∑T
t=1 β̂(t)Aji(t− 1)

=

∑
i,j,t ρ

(2)
ij (t)Âij(t)∑

i,j

∑T
t=1 β Aji(t− 1)

, (S17)

β which is also considered a static parameter will be achieved by applying root-finding methods on the following
equation,

∑
i,j


T∑
t=1

−β̂(t)

∑
k,q

uikvjqwkq + η Aji(t− 1)


+

T∑
t=1

Âij(t) +

T∑
t=1

[
Aij(t− 1)(1−Aij(t))−

β

1− β
Aij(t− 1)Aij(t)

]}
= 0 , (S18)

with variational distributions:

ρ
(1)
ij (t) =

λ0ij
λ0ij + η Aji(t− 1)

, (S19)

ρ
(2)
ij (t) =

η Aji(t− 1)

λ0ij + η Aji(t− 1)
, (S20)

φijkq =
uikvjqwkq∑
k,q uikvjqwkq

, (S21)

which are time dependent through adjacency matrix.

S3. Only w dynamical (w-DYN)

Assuming w(t) changing in time while the others remain constant, we have:

uik =
a− 1 +

∑
j,q,t ρ1(t)φijkq(t) Âij(t)

b+
∑
j,q vjq

∑T
t=0 β̂(t)wkq(t)

(S22)

vjq =
a− 1 +

∑
i,k,t ρ1(t)φijkq(t) Âij(t)

b+
∑
i,k uik

∑T
t=0 β̂(t)wkq(t)

(S23)

wkq(t) =

∑
i,j ρ1(t)φijkq(t)Âij(t)∑

i,j uik vjqβ̂(t)
(S24)

η =

∑
i,j,t ρ2(t)Âij(t)∑

i,j,t=1 β̂(t)Aji(t− 1)
, (S25)
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with the following equation for the log-likelihood:

L(T,Θ)=
∑
i,j

−∑
k,q

uikvjq

(
T∑
t=0

β̂(t)wkq

)
+ η

(
T∑
t=0

β̂(t)Aji(t− 1)

)
+

T∑
t=0

Âij(t) log

∑
k,q

uikvjqwkq(t) + η Aji(t− 1)

 +

+

T∑
t=0

Âij(t) log β̂(t) +
∑
t=1

[Aij(t− 1)(1−Aij(t)) log β +Aij(t− 1)Aij(t) log(1− β)]

}
, (S26)

β as a static parameter could be derived from the following equation by root-finding methods,

∑
i,j


T∑
t=1

−β̂(t)

∑
k,q

uikvjqwkq(t) + η Aji(t− 1)


+

T∑
t=1

Âij(t) +

T∑
t=1

[
Aij(t− 1)(1−Aij(t))−

β

1− β
Aij(t− 1)Aij(t)

]}
= 0 , (S27)

with variational distributions:

ρ1(t) =
λ0ij(t)

λ0ij(t) + η Aji(t)
, (S28)

ρ2(t) =
η Aji(t)

λ0ij(t) + η Aji(t)
, (S29)

φijkq(t) =
uikvjqwkq(t)∑
k,q uikvjqwkq(t)

, (S30)

which are time dependent as the result of dependency on adjacency matrix, and w(t).

S4. Dynamical parameters

Assuming u(t), v(t), w(t) changing in time, we need to take only the derivative w.r.t. those individual terms in the
loglikelihood. Defining Âij(t) = Aij(t)(1−Aij(t−1)) if t > 0, Âij(0) = Aij(0) and β̂(t) = 1 if t = 0, β̂(t) = β if t > 0:

uik(t) =

∑
j,q ρ1(t)φijkq(t) Âij(t)∑
j,q vjq(t)wkq(t)β̂(t)

(S31)

vjq(t) =

∑
i,k ρ1(t)φijkq(t) Âij(t)∑
i,k uik(t)wkq(t)β̂(t)

(S32)

wkq(t) =

∑
i,j ρ1(t)φijkq(t)Âij(t)∑
i,j uik(t) vjq(t)β̂(t)

(S33)

η =

∑
i,j,t ρ2(t)Âij(t)∑

i,j,t β̂(t)Aji(t− 1)
, (S34)

with variational distributions:

ρ1(t) =
λ0ij(t)

λ0ij(t) + η Aji(t)
, (S35)

ρ2(t) =
η Aji(t)

λ0ij(t) + η Aji(t)
, (S36)

φijkq(t) =
uik(t)vjq(t)wkq(t)∑
k,q uik(t)vjq(t)wkq(t)

. (S37)
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For dynamic β, we have this equation,

∑
i,j

Θ(t− 1)

−β(t)

∑
k,q

uik(t)vjq(t)wkq(t) + η Aji(t− 1)

 + Âij(t) +Aij(t− 1)(1−Aij(t)) +
β(t)

1− β(t)
Aij(t− 1)Aij(t)

 = 0 ,

(S38)

where Θ1(t), the step function, is 0 for t < 1, and 1 for t ≥ 1.

S5. Performance in synthetic networks

A. Link-prediction

Figure S1 compares the ability of DynCRep and CRep in the link prediction task. In addition, we tested the
model against DynCRep0 to evaluate the effect of reciprocity. The AUC for the DynCRep algorithm is obtained as
explained in Sec. III A. For the comparison, we apply CRep algorithm on each time snapshot of the dynamic network,
independent from other snapshots. Therefore, we perform edge prediction using 5-fold cross-validation. To this end,
at each realization, we divide the dataset, i.e., the entries Aij(t) of the adjacency matrix, into five equal groups selected
at random. We use four of these groups as a training set, to infer the parameters Θ. We then use the 5th group as a
test set, evaluate the score for each Aij(t) in this set, and calculate the AUC value. By varying which group we use
as the test set, we get 5 trials per realization. The final AUC is the average over these.

As we can see, w-DYN version of DynCRep, by achieving higher values for AUC, outperforms other approaches in
predicting edges. However, when reciprocity effect is higher in dataset (η = 0.5), CRep could not be suitable model
to predict links as it does not deploy the chronological information of the reciprocated edges.

It is worth mentioning that we also tested the ability of DynCRep to recover model parameters η and β. The
algorithm shows good results in recovering the value of β. However, the model underestimates the value of η for the
initial time steps. But the results improve as we observe more time steps (results not shown).

a)

b)

FIG. S1: Predicting future evolution. Comparison of the AUC value obtained by DynCRep and the AUC from
CRep applied on each time snapshot. a) DynCRep with time-varying affinity matrix. b) DynCRep with static
community membership parameters. In the case of CRep, AUC was calculated with 5-fold cross-validation.
Networks are generated as explained in Sec. III, with N = 500, average degree 〈k〉 = 5, β = 0.2, K = 3. The three
plots are results for η ∈ {0.05, 0.2, 0.5}. Markers and bars are the means and standard deviations over 20 network
samples, respectively.
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S6. Performance in real networks

A. Real data: dataset description

We apply our approach to two different types of networks: online communication, and citation networks. A brief
overview of features of the studied datasets is presented in the Table S1. For the datasets in which the interaction
between nodes occur at intervals of varying lengths, we split them in time snapshots with equal and suitable time
intervals. We applied a pre-processing treatment on time snapshots of datasets: i) self-loops are removed; ii) only nodes
that have at least one out-going and one in-coming edge are kept; iii) we used only the giant connected components.
In the case of citation network (here: SCC2016 ), it requires an additional pre-process of extracting a network of
author-author from a network of paper-citation; hence an edge means that an author cites another author.

TABLE S1: Datasets description.

Network Abbreviation Category N E T Ref.
Email Eu core network EU Email Network 834 24348 5 [28]
Statistics Citation SCC2016 Citation Network 2654 21568 4 [29]

B. Reproducing the reciprocity

FIG. S2: Reproducing the reciprocity of EU-monthly network. Sampled networks were generated based on
the inferred parameters fitted on the EU-monthly network network [28]. Networks are generated as explained in
Sec. III, with N and average degree 〈k〉 as of the real datasets; K = 4. Markers and bars are the means and
standard deviations over 5 samples of synthetic networks, respectively.

C. Inference of parameters η and β.

Table S2 shows the example of a comparison between the ground truth values of η and β, applied to generate
synthetic datasets, and the inferred values of the corresponding parameters by DynCRep. This shows how inference of
the two parameters improves as the number of network snapshots increases, with β having values close to the ground
truth already for two snapshots.
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TABLE S2: The inferred values for η and β by applying the DynCRepon a synthetic network with: N = 500, average
degree= 20, K = 3, T = 6.

T η0 β0 inferred η inferred β

1 0.5 0.2 0.01037 1.0
2 0.5 0.2 0.06864 0.24690
3 0.5 0.2 0.11148 0.24067
4 0.5 0.2 0.12459 0.23260
5 0.5 0.2 0.14086 0.22820
6 0.5 0.2 0.15178 0.22496
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