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The edge-disjoint path problem on random graphs by message-passing
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We present a message-passing algorithm to solve the edge disjoint path problem (EDP) on graphs incorporat-
ing under a unique framework both traffic optimization and path length minimization. Themin-sumequations
for this problem present an exponential computational costin the number of paths. To overcome this obstacle we
propose an efficient implementation by mapping the equations onto a weighted combinatorial matching prob-
lem over an auxiliary graph. We perform extensive numericalsimulations on random graphs of various types
to test the performance both in terms of path length minimization and maximization of the number of accom-
modated paths. In addition, we test the performance on benchmark instances on various graphs by comparison
with state-of-the-art algorithms and results found in the literature. Our message-passing algorithm always out-
performs the others in terms of the number of accommodated paths when considering non trivial instances
(otherwise it gives the same trivial results). Remarkably,the largest improvement in performance with respect
to the other methods employed is found in the case of benchmarks with meshes, where the validity hypothesis
behind message-passing is expected to worsen. In these cases, even though the exact message-passing equations
do not converge, by introducing a reinforcement parameter to force convergence towards a sub optimal solution,
we were able to always outperform the other algorithms with apeak of 27% performance improvement in terms
of accommodated paths. On random graphs, we numerically observe two separated regimes: one in which all
paths can be accomodated and one in which this is not possible. We also investigate the behaviour of both the
number of paths to be accomodated and their minimum total length.
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FIG. 1: An instance of the EDP problem over a 3-regular randomgraph ofV = 20 andM = 6: examples of solutions of the
unconstrained (left) and optimal (right) EDP problem are displayed. In the latter, the purple communication is redirected along
a longer path to avoid edge-overlap. The yellow one has two shortest paths of equal length (degeneracy) in the unconstrained

case, but once EDP is enforced this degeneracy is broken and only one of the two is optimal (right).

I. INTRODUCTION

The optimization of routing and connection requests is one of the main problems faced in traffic engineering and communi-
cation networks [1]. The need to deliver Quality of service (QoS) [2, 3] performances, when transmitting data over a network
subject to overload and failures, requires both efficient traffic management and resource optimization.
Some aspects of these problems can be formalized using the edge-disjoint path (EDP) problem. This is a constrained opti-
mization problem that is defined as follows. For a given network and a set of communication requests among pairs of users,
the EDP consists in finding the maximum number of communications that can be accommodated at the same time, under the
constraint that different paths cannot overlap on edges. Moreover, the additional requirement of minimization of the total path
length can be considered. Apart from a purely theoretical interest [4], the EDP finds a wide range of applications: in very-large-
scale-integration (VLSI) design, in admission control andvirtual circuit routing and in all-optical networks. In VLSI design it is
required to route wires on a circuit avoiding overlaps, along with minimizing the length of the wires [5, 6]. In admissioncontrol
and virtual circuit routing [7–9] one needs to reserve in advance a given path for each communication request so that oncethe
communication is established no interruption will occur. This has applications in real-time database servers, large-scale video
servers [10–12], streaming data and bandwidth reservationin communication networks [13–16] and in parallel supercomputers.
All these applications require high quality data transmission and full bandwidth exploitation. Routing via edge disjoint paths
allows for an efficient bandwidth allocation among users because overlap avoidance means full bandwidth exploitation by each
single user. An area that has attracted particular attention in the last decade is communication transmission in all-optical net-
works. Along an optical fiber different communications cannot be assigned the same wavelength to transmit data. Moreover,
a unique wavelength must be assigned on all the edges contributing to the path assigned for a given communication. Routing
communications under the above two requirements define the problem of routing and wavelength assignments (RWA) in this
type of networks [17]. These two constraints suggest that a strategy that iteratively builds edge disjoint paths solutions could
allow for a more efficient bandwidth management, namely by using an overall smaller number of wavelengths. This leaves
available the remaining ones (according to the edge capacity) to be used either by new users entering the network or by allowing
current users to exploit higher bandwidth. This strategy has indeed been applied using greedy [18] and genetic algorithms [19]
with performances comparable to other methods based on integer linear programming, graph coloring or bin packing.
The EDP is classified among Karp’s NP-hard combinatorial problems [20, 21]. Defining the approximation ratio of a given
algorithm as the ratio between the result obtained in term ofcost/profit by the algorithm and the optimal one (or viceversa de-
pending on what order gives the maximum ratio), the EDP problem is hard to approximate in the worst case; it has been proved
that even an approximation with ratioO(m

1
2−ε) is NP-Hard. The best known approximation ratio for the number of accomodated

paths isO(min{n2/3,
√

m}) [22, 23] wheren andmare the number of nodes and edges in the graph, respectively.Negative results
on worst-case inapproximability did not stop progress on heuristc approaches. The problem has been studied intensely with a
variety of classical techniques: heuristic greedy algorithms [13, 14, 18, 24], elaborated strategies using bin packing[25], inte-
ger/linear programming relaxations [26–29], post-optimization [30], Montecarlo local search [31], genetic algorithms [32–34],
particle swarm optimization [35] and ant colony optimization [36], among them.

In this paper we propose a distributed algorithm to solve theEDP problem based on message-passing (MP) techniques (or
cavity method) [37]. This method has been extensively employed to address problems in spin glass theory [38–40], combinatorial
optimization [41] and more recently in routing problems on networks [42–45]. The evaluation of the equations at the coreof the
MP technique requires, for each vertexi in the underlying graph, to solve a local combinatorial optimization problem, performing
a minimum over a set which is exponentially large in the number of neighbors ofi. We propose an efficient method to perform
this calculation, by mapping it into a minimum-weight matching problem on a complete auxiliary graph with vertices in the set
∂i of neighbors ofi, that can be solved by classical algorithms [46]. With this construction, each iteration of the MP equations
can be computed in a time which is polynomial in the number of graph edges (and linear in average for sparse random graphs).
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The MP algorithm is tested on computer-generated instancesof different classes of random graphs to study the scaling properties
with the system size and to compare the performances againsta greedy algorithm. We also considered the EDP problem on some
benchmark instances found in the literature, for which we could compare the message-passing results with those obtained using
other types of algorithms: greedy, ant colony optimization[36] and Montecarlo local search [31].
The paper is organized as follows. In Section II we define the EDP optimization problem, for which we present the message-
passing equations in Section III, together with the mappingon a matching problem that simplifies their actual implementation.
Section IV reports the results of simulations on random graphs and the scaling of the relevant quantities with the systemsize,
while the comparison between the performances of the message-passing algorithm and other methods is discussed in Section V.
Conclusions are given in Section VI.

II. THE EDGE-DISJOINT PATHS PROBLEM

Given a network and a set ofM communications requests between pairs of senders and receivers, the standard EDP consists
in finding the maximum number of accommodated paths which aremutually edge disjoint. In the applications described in the
Introduction, the length of the communication paths is a quantity that, directly or indirectly, affects the overall transmission
performances, in terms of transmission delays, infrastructure cost and network robustness. We take into account this aspect by
considering the Minimum Weight Edge Disjoint Paths (MWEDP)problem, a generalization of the EDP problem that combines
in a unique framework both path length optimization and edgedisjointness. An instance of the MWEDP problem is defined by a
graphG(V,E), whereV denotes the set of nodes andE is the set of edges, by an assignment of edge weightsw, that we assume
to be non-negative real numbers and by a set ofM communication requests{(Sµ,Rµ)}µ=1,...,M between ordered pairs of nodes.
We denote byπµ, a path, i.e. a set of consecutive edgese ∈ E, that connects a senderSµ with the corresponding receiverRµ. The
optimization problem consists in findingM pairwise edge-disjoint pathsπµ while minimizing the total edge weight

∑

µw(πµ),
wherew(πµ) =

∑

e∈πµ w(e).
The classical EDP problem could be trivially recovered by assigning zero weight to all edges inG(V,E) and a positive cost

to each communication that is not accommodated. Alternatively, any solution of the MWEDP problem can be reinterpreted as a
solution of the classical EDP problem by slightly modifyingthe original instance of the graphG(V,E) by introducing an extra
edge between each pair (Sµ,Rµ) with sufficiently large cost, such that the algorithm couldstill always find a solution possibly
using these expensive extra edges. By construction, the cost of each of theseM extra edges should be larger than the maximum
possible weight a single path can take. Then the solution of the classical EDP problem is obtained from any solution of the
MWEDP problem by discarding the paths passing through the extra edges. In the present paper, we keep information about path
length minimization by assigning unit weights (i.e.wi j = 1,∀(i j ) ∈ E) to the original edges of the graphG(V,E) and a fixed
cost|E| + 1 to the extra edge added between each pair (Sµ,Rµ).

We introduceM-dimensional variables̄I i j = (I1
i j , . . . , I

M
i j ) with entriesIµi j ∈ {±1, 0} representing the communication passing

along an edge:

Iµi j =























1, if communicationµ passes fromi to j,
−1, if communicationµ passes fromj to i,

0, otherwise.

(1)

We call these vectorscurrentsas they must satisfy current conservation at each nodei (Kirchhoff law):
∑

j∈∂i
Iµi j + Λ

µ

i = 0, ∀µ = 1, . . . ,M, (2)

where we defined for each nodei and each communicationµ a variableΛµi such that

Λ
µ

i =























1 if i = Sµ,
−1 if i = Rµ,
0 otherwise.

(3)

The constraint of edge-disjointness specifies that for eachedge (i j ), at most one ofIµi j is non-zero, therefore each vectorĪ i j can
be parametrized by a variable taking 2M + 1 different values. Notice that the set of variables{Ī i j }(i j )∈E completely specifies the
state of the network. In this multi-flow formalism, the MWEDPproblem is a combinatorial optimization problem in which the
global cost functionC({Ī i j }) =

∑

(i j )∈E wi j f (||Ī i j ||) depends additively on the total net current||Ī i j || =
∑

µ |I
µ

i j | along the edges, and
the edge-disjointness is ensured by defining

f (||Ī i j ||) =























0, if ||Ī i j || = 0,
1, if ||Ī i j || = 1,
+∞, if ||Ī i j || > 1,

(4)
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FIG. 2: The modified cavity graphG[i j ] .

where|Iµi j | = 0, 1 denotes the absolute value ofIµi j . Thus configurations with more than one communication passing along an
edge have infinite cost and, in the case of unit weights, the total costC({Ī i j }), if finite, represents exactly the total path length, i.e.
the number of edges traversed by paths.

III. THE MESSAGE-PASSING ALGORITHM

On a tree, the optimization problem defined in Sec II can be solved exactly by iteration using the following message-passing
algorithm. Let us assume thatG is a tree and consider the subtreeG[i j ] defined by the connected component ofi in G \ (i j ) (see
Figure 2). We defineEi j (Ī i j ) to be the minimum costC({Ī i j }) among current configurations that satisfy Kirchoff’s lawson all
vertices ofG[i j ] given that we fix an input (or output) extra currentĪ i j entering (or exiting) nodei. Because of the absence of
cycles, it is possible to write a recursive equation forEi j as a sum of cost contributions coming from neighbors ofi in the subtree,
plus the single cost contribution due to the currentĪ i j passing along edge (i j ). We call these quantitiesEi j (Ī i j ) messages and they
verify themin-sumrecursion relation [39]:

Ei j (Ī i j ) = min
{Īki}|constraint



















∑

k∈∂i\ j

Eki(Īki)



















+ f (||Ī i j ||) (5)

whereconstraintis the Kirchhoff law at nodei and∂i denotes the neighborhood ofi. This relation is exact for trees and can
be considered as approximately correct for locally tree-like graphs, such as sparse random ones [37, 39], where correlations
between neighbors of a given node decay exponentially. One can develop further this recursion to obtain a set of three types of
message-passing equations, one for each type of node, i.e. for each value ofΛµi . A fixed point of these equations can be found
by iteration from arbitrary initial values for the messagesuntil convergence. Then, one can collect at each edge the incoming
and the outgoing converged messages to find the optimal configuration{Ī ∗i j }(i j )∈E such that:

Ī ∗i j = arg minĪ

{

Ei j (Ī) + E ji (−Ī) − f (||Ī ||)
}

(6)

where the last term is subtracted to avoid double counting ofthe cost of the single edge (i j ).

A. The mapping into a weighted matching problem.

The min-sum algorithm as in (5) presents a computational bottleneck coming from the fact that for each output currentĪ i j there
is a large number of possible neighborhood’s configurations{Īki}k∈∂i\ j that are consistent both with the edge-disjoint constraints
and with Kirchhoff’s law. In the calculation of the minimum in (5) one needs in fact to consider all possible combinationsof
paths entering and exiting nodei; the number of such combinations grows exponentially with the degree of nodei. Nevertheless,
the calculation can be performed efficiently by reducing it to a maximum weight matching problem [46] on an auxiliary weighted
complete graphG′i . The nodes ofG′i are the neighborsk ∈ ∂i and the (symmetric) weights matrixQ will be defined as

Qkl = − min
1≤|ν|≤M

{Eki(ν) + Eli (−ν)} + Eki(0)+ Eli (0) (7)
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FIG. 3: Mapping into a weighted matching problem. Left: intermediate step whereG′i is built. On the leftmost part we show an
example of several communications passing along (i j ) and exiting along the remaining neighborsk ∈ ∂i \ j. Right: the final

step whereG′′i jl is built; the best configuration around nodei when the blue current passes through (i j ) is given by the minimum
weighted matching on the complete auxiliary graphG′′i jl . Edges red and green represent the best matching, i.e. the configuration

where two other communications enter/exit neighbors ofi \ j.

whereEkl(ν) = Ekl(Īkl) with Iµkl ≡ δµ,ν for ν > 0, Iµkl ≡ −δµ,ν for ν < 0 andIµkl ≡ 0 for ν = 0. Notice that this notation maps the
M-dimensional vectors̄I i j to the 2M + 1 possible current configurationsν allowed by the edge-disjointness constraint along a
given edge. The computation of matrixQ, that requiresO(Mk2) operations, should be performed only once at the beginningof
the update routine for nodei ∈ G.

Consider now a neighborj ∈ ∂i and a givenµ passing through edge (i j ), we want to updateEi j (Ī i j ). Assuming to know the
other vertexl ∈ ∂i\ j where the currentµ entering (resp. exiting) nodei can exit (resp. enter), then the least costly configuration
in the remaining neighborhood is given by

qmin
jl = −M jl +

∑

k∈∂i\{ j,l}
Eki(0) (8)

whereM jl is the maximum weight of a matching on a complete graphG′′i jl with k− 2 nodes, built fromG′i by removing nodes
j andl (and all their incident edges). Recall that a matching is a subset of edges ofG′′i jl that do not share any vertex[46]. This is
indeed equivalent to assigning to some of the remaining pairs of neighboring nodes currentsν ∈ [−M, . . . ,M] that enters through
one of them and exits through the other, such that the overallcost of the configuration is minimum. The key point is that the
matching condition, i.e. the fact that edges in the solutionset cannot have a vertex in common, in our problem translatesin
the condition of forbidding edge overlaps. Hence, thanks tothis auxiliary mapping, we are able to reduce the computation of
the update rule for the MP equations of the edge disjoint pathproblem to the solution of a standard (polynomial) combinatorial
optimization problem, i.e. maximum weight matching. In Figure 3 we give a diagrammatic representation of the mapping.
Note that in the maximum matching problem, edges in the inputgraph with negative weight can be simply removed. Notice
that the neighboring currentν can also be a priori equal toµ in this algorithm, because the configurations whereµ appears in
more than one pair of edges will be eliminated in the minimization calculation as they have higher cost in our formulation. The
minimum weight is thus independent ofµ, i.e. of which message we are updating, a fact that allows reducing the complexity of
the algorithm by a factorM.

Finally one needs to minimize overl given the matrixqmin:

Et+1
i j (µ) = min

l ∈ ∂i \ j

{

Et
li (µ) + qmin

jl

}

+ ci j (µ) (9)

whereci j (µ) is the cost of edge (i j ), that in our case is 0 ifµ = 0 and 1 otherwise. We can notice that in order to evaluate each
term inside the brackets we need to perform a matching optimization on each of the (k − 2)-node complete graphsG′′i jl built

∀ l ∈ ∂i \ j. Each of these matching routine has complexityO(k3 logk) [47] and there areO(k2) possible combinations ofj and
l. Reminding that we first need to evaluate the weight matrixQ, the overall complexity of this algorithm will be:

O(k5 logk+ Mk2)

which is polynomial in the variablesk andM. Once we have performed this whole procedure, we get all the information we
need to calculate the 2M + 1 update messagesEt+1

i j (µ), for eachj ∈ ∂ i, adding a termO(kM) to the final complexity (which is
nonetheless negligible compared to the previous two).

The case ofµ = 0, in which no current passes through edge (i j ) regardless of what happens on the other edges, is addressed
by calculating a matching on the (k−1)-node complete graph composed of all nodesl ∈ ∂ i\ j. If i is either a sender or a receiver,
i.e. Λµi ∈ {±1} for a givenµ ∈ [1, . . . ,M], the same computation can be performed provided that an auxiliary node, indexed by
the communication labelµ is added to the original graphG and connected to nodei, such that its exiting messages will be fixed
once at the beginning in the following way and never updated:Eµi(ν) = −∞ if 0 < ν = µ (sender) or 0< −ν = µ (receiver), and
Eµi(ν) = +∞ otherwise.



6

B. The role of reinforcement.

In order to aid and speed-up convergence of the MP equations,we used a reinforcement technique [48, 49], in which a set
of external local fieldsht

i j (µ) = Et
i j (µ) + Et

ji (−µ) − ci j (µ) act on the messages gradually biasing them to align with themselves.
The reinforcement is introduced by promoting edge costs to become communication-dependent quantities defined as linear
combinations of the cost at the previous time-step and the reinforcement local fields:

ct+1
i j (µ) = ct

i j (µ) + γth
t
i j (µ) (10)

with c0
i j (µ) = ci j . This cost will then be inserted into equation (9) to replacethe termci j (µ). This has the effect to lead the

messages to converge faster, gradually bootstrapping the system into a simpler one with large external fields. In practice we
chooseγt = tρ and one has to choose the growth rate ofγ by tuning the reinforcement parameterρ, that controls the trade-off
between having a faster convergence and reaching a better solution. We testedρ on instances on three types of graphs to finally
choose to fix it toρ = 0.002 in the rest of the simulations. In Figure 4 we could noticethat this value achieves comparable results
(inset) in terms ofMacc/M to lowerρ in less time.
In Figure 5(left) we report the number of converged instances (over 100 realizations) for standard MP (without reinforcement)
on four types of random graphs (as described in the next section) and fixed sizeV = 1000 and average degree〈k〉 = 3. The
convergence failure of the standard MP increases considerably with M/V until it reaches a peak value, then it decreases. On the
contrary, when reinforcement is used, convergence is always achieved in less than 100 steps (right panel).
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FIG. 4: Reinforcement performance. Number of iterations toreach convergence as a function of reinforcement parameterρ on
BRITE graphs AS-BA217 (V=100) withM = 25, 40, blrand1 (V=500) withM = 125 and mesh 15x15 withM = 22. Inset: the

number of accomodated pathsMacc is substantially unchanged in the range of parameter valuesunder study.

IV. RESULTS ON RANDOM GRAPHS

First, we tested the MP algorithm on various types of random graphs, with fixed sizeV = |V| = 1000 and average degree
〈k〉 = 3, 5, 7: regular random graphs (Reg), Erdős-Rényi random graphs (ER) [50], random graphs with power-law distribution
(SF) [51] and a set of graphs (RER) obtained adding edges independently with probabilityp starting from ak0-regular random
graph (for largeV, the final average degree of such graphs is〈k〉 = k0 + d, with d = pV). We compared the performance
with a multi-start greedy algorithm (MSG) [36]. This heuristic algorithm calculates paths by iteratively choosing a (random)
communicationµ, finding the corresponding shortest path and removing the edges belonging to the path from the graph. The
process is repeated until either there are no paths left to berouted or no communications can be accommodated anymore in
the graph. The multi-start version repeats the same procedure a given number of times and keeps the best solution in terms
of Macc, the number of accommodated paths. A bounded-length version [52] of MSG has been used to develop an iterative
algorithm to solve the RWA using EDP in [18]: its performancewas comparable to the one obtained using a linear programming
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FIG. 5: Left: Fraction of instances in which convergence standard MP fails (reinforced MP always converged in our
experiments). Right: number of iterations for convergencefor standard MP and reinforced MP (ρ = 0.002) in case of random

graphs ofV = 1000 and〈k〉 = 3 as a function ofM/V. Notice how the reinforcement term, besides ensuring convergence,
greatly improves the convergence time.

solver on graphs of small sizes (V ≤ 40) but with faster execution times. This makes it suited to be tested on larger graphs. A
disadvantage of the greedy method is that it relies heavily on the order in which communications are accommodated (it disregards
the information about sender-receiver pairs other than theones already accommodated). The difference in the performances
of the message-passing and greedy algorithm could then be used to assess the relevance of local information usage in such
optimization problem. We tested both the standard multi-start and the bounded-length version but we found equal results with
the first being slightly faster, in our tests, in terms of execution times. Thus we decided to use the standard MSG in our
simulations. First we compared the results in terms of number of accommodated pathsMacc by calculating the ratioMacc/M. In
Figure 6 we show the behavior ofMacc/M for each type of random graph andV = 103, 〈k〉 = 3 using MP, reinforced MP and
MSG. Both MP versions perform better than MSG, with the standard MP giving better results. The corresponding results for
〈k〉 = 5 are similar (not reported) but the valueMacc/M < 1 is reached at higher values ofM/V and standard MP and MP with
reinforcement give almost always the same solutions. The case〈k〉 = 7 is not reported because, given the high number of edges,
the solutions are often trivial (i.e.Macc/M = 1), a part from the case of SF graphs where we have insteadMacc/M < 1 due to the
presence of many small degree nodes. We also studied the total path length as a function ofM/V for the solutions, obtained with
the different algorithms. We consider the ratio between thetotal path lengths obtained with greedy and MP for solutionsin which
the numberMacc of accommodated path is the same. In Figure 7 we can see that MPalways outperforms the MSG algorithm
for all types of graph under study. The results for the SF graph with 〈k〉 = 7 are quite different from the other graphs: both for
MP and MSG the ratio departs from 1 at rather small values ofM/V, possibly because the maximum number of accommodated
paths is limited by the existence of many small degree nodes that act as bottlenecks, preventing the use of many alternative edge-
disjoint routes. The scaling behavior of the fraction 1−Macc/M of unaccommodated communications and the average total path
lengthL/V of accommodated paths with the system size in the solutions obtained using the MP algorithm is shown in Figure 8
for regular random graphs and ER random graphs. These quantities are plot as functions of the scaling variablex = M logV

V . Note
that when paths do not interact,x is a measure the total path length per site, as the average path lenght is proportional to logV.
In the top panels, two regimes are visible: for smallx, all communications can be accommodated, whereas at some value x∗ the
curves for different values ofV depart from zero. This behavior can be interpreted as a SAT/UNSAT transition, in analogy with
the terminology of constraint-satisfaction problems [41]. The collapse of the curvesL/V for different values ofV is very good in
the region in which all paths can be accommodated. On the contrary, in the UNSAT region, the curves for different sizes do not
collapse anymore, though the relative difference between them seems to decrease by increasing the system size, and the curves
for the largest graphs analyzed (V = 8000, 10000) are almost superimposed. We argue thatx is the correct scaling variable in
the limit of infinitely large graphs, and the observed mismatch could be due to finite-size effects. The change of slope in the
roughly linear behavior of the average total lengthL/V is motivated by the fact that in the SAT region, all communications can
be accommodated at the cost of taking longer paths with respect to those actually accommodated in the UNSAT region.
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FIG. 6: MP vs greedy performance. We plot the performance in terms ofMacc/M for (from top to bottom) regular, RER, ER
and SF graphs of fixed sizeV = 103 and average degree〈k〉 = 3. Error bars are smaller than the size of the symbols.

V. COMPARISON WITH OTHER METHODS

A comparison between the performances of the MP algorithm and those of alternative algorithms proposed in the literature
[31, 36] is reported in Table I. As benchmark instances we used: two internet-like topologies generated using the BRITE graph
generator [53] with parameters set as in [36]; mesh graphs ofsizes 15x15 and 25x25, Steiner and planar graphs as reported
in [31]. For each of these graphs we used the same set of sender-receiver pairs of sizeM = 0.10V, 0.25V, 0.40V used in [31].
For each of these instances we ran the MP, MP with reinforcement and MSG algorithms 20 times and collected the average,
minimum and maximum number of accommodated pathsMacc along with the average computational time in seconds. All results
are reported in Table I.

A. Other optimization methods.

A part from the multi-start greedy, we used as comparison twomore structured algorithms. The first one is an Ant Colony
Optimization metaheuristic [36]. This method builds an EDPsolution incrementally from partial solutions provided bya set
of M ants. Each ant generates a path for a given communication making probabilistic decisions during the construction steps.
These are made by processing local information modeled aspheromoneinformation provided by other ants. The advantage
of this method is to divide the EDP in subproblems and to use local information. The drawback is that it relies on several
parameters that need to be carefully tuned in order to have a sensitive solution. Moreover the computational time increases
considerably with the system size. The second algorithm is aMontecarlo-based Local Search [31], that uses as main Montecarlo
step a path rewiring based on rooted spanning trees. Unfortunately the running time grows rapidly with the system size, making
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FIG. 7: Length performance. We plot (left) the relative performance of MSG over MP in terms of total length of the solution
paths:y = 100(Lg/LMP − 1). HereLg andLMP denote the total path lengths calculated with MSG and MP respectively. We use

Reg, RER, ER and SF graphs of fixed sizeV = 103 and average degree〈k〉 = 3, 5, 7 (from top to bottom). On the right we
report the number of instances where the two algorithms find the same solution in term ofMacc/M over 100 realizations.

it computationally expensive when used on large graphs. Results are reported in Table I. Finally, we performed simulation using
the multi-start greedy heuristic described above.

B. Results.

In Table I we report the performance comparison in terms ofMacc between the two versions of MP (with and without rein-
forcement) and the other 3 types of algorithms. The message-passing always performs equal or better than the other methods.
Surprisingly the best performances are given for meshes andplanar graphs, where we would expect the failure of MP due to
the existence of short loops. What we find instead is that, even though the standard MP converges in few of these instances
on meshes, the version with reinforcement always finds a solution that is always better than the other algorithms. The larger
performance gap is seen on larger set of commodities and bigger graphs. Performance improvement reaches 27% with respect
to LS, the best one between the other algorithms tested. The same considerations can be made in the case of planar graphs. We
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FIG. 8: Finite-size effects. We plot 1− Macc/M (top) and the total length per nodeL/V (bottom) for Reg (left) snd ER (right)
graphs as a function of the scaling variableM logV

V . We can notice the finite-size effects decreasing with system size leading to
the curves corresponding to the biggest graphsV = 8000, 10000 to almost superimpose. Note that in the SAT phase the total
length grows linearly in logV for all system sizes as expected but in the UNSAT phase the graphs split. Error bars are smaller

than point size.

claim that this gap would increase with system size, but unfortunately the size of benchmark graphs remains limited toV ≤ 500.
Moreover these alternative algorithms do not consider pathlength optimization, thus we cannot compare the performance with
respect to this variable. The ACO has been recently tested onseveral types of graphs (still withV ≤ 500) against a Genetic
Algorithm (GA) in [54]. It performed better than GA in the case of BRITE graphs 1-6 and 14% worse in the case of 10x10
and 15x15 mesh graphs. The MP algorithm always outperforms ACO and in the case of 15x15 mesh the gap reaches 23.5%.
Unfortunately neither the GA has been tested on larger graphs nor gives results in terms of path length of the solutions.

VI. CONCLUSIONS

The EDP problem is a combinatorial optimization problem that finds applications in several traffic engineering problems,
from VLSI design to routing and access control management incommunication networks. In this work we proposed a min-
sum message-passing algorithm to find the maximum number of communicationsMacc that can be accommodated in a network
subject to edge-disjoint constraints and minimizing totalpath length at the same time. We devised an efficient method to
implement these equations by exploiting a mapping into a minimum weight matching problem on an auxiliary graph. The
standard MP algorithm and the version with reinforcement consistently outperform alternative algorithms found in theliterature
on different types of benchmark graphs in terms of the fraction Macc/M of accommodated communications. We found two
different behaviors: on some “easy” instances, all algorithm accommodate all requests, providing the same results andsuggesting
that these could be the optimal ones; there are non-trivial instances in whichMacc/M < 1, but the message-passing algorithm
always outperforms the other algorithms in terms of the number of accommodated paths. In particular we obtained better results
in the case of meshes and planar graphs, even though these topologies are not locally tree-like as required by the cavity method.
In these cases, we could always ensure convergence of the MP equations by exploiting a reinforcement technique. The quality
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of solutions improves with decreasing the reinforcement parameter, such that we could always find better solutions thanthose
obtained using the other algorithms under study. Unfortunately, for the heuristic algorithms employed on the benchmarks we
could not access other relevant metrics such as the average total path length, as it was not considered before in the literature
[31, 36]. Nonetheless we could directly compute such quantity for a multi-start greedy heuristic in several graphs, finding that
MP always gives a lower average path length for solutions with the same fraction of accommodated communications.

In conclusion, combining the good performance results, in terms of traffic and path length, with the polynomial time imple-
mentation, the use of the MP algorithm opens new perspectives in the solution of relevant routing problems over communication
networks such as the RWA in optical networks. In particular,it would be interesting to apply the MP algorithm in the iterative
construction of RWA solutions over communication networkswith finite link capacity, as it has been done for other types of
EDP algorithms.
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Appendix A: Convergence criterion

Given a decision variabledt to be calculated at each iteration update stept, an integer variablen and a time stepTmax we have
convergence if, forn consecutive iteration steps,dt does not change, and we fix a maximum iteration timeTmax to update MP

http://www.cs.bu.edu/brite/
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equations. Formally this writes:

∃ t0 ∈ [1,Tmax− n] s.t. dt0+i
= dt0 ∀i = 1, . . . , n (A1)

In our simulations we defined the decision variable as the total difference of the optimal currents (calculated edge by edge)
between two consecutive iteration steps :

dt
=

∑

(i j )∈E
[1 − δµt

i j ,µ
t−1
i j

] (A2)

whereµt
i j = |minµ=−M,...,M

{

Ei j (µ) + E ji (−µ) − ci j (µ)
}

| and convergence is reached whendt
= 0 for n consecutive time steps.

Appendix B: Benchmark results
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Instance MP MP rein = 0.002 MSG (greedy) ACO LS MP gain vs.
Name |V| |E| 〈k〉 〈M〉 Mmin Mmax 〈M〉 Mmin Mmax 〈M〉 Mmin Mmax 〈M〉 Mmin Mmax 〈M〉 Mmin Mmax MSG ACO LS

blrand101 500 1020 4.08 16.00 16 16 16.00 16 16 13.65 13 15 14.80 14 16 16.00 16 16 6.67 0.00 0.00

blrand251 500 1020 4.08 32.00 32 32 32.00 32 32 27.75 26 30 31.85 31 32 32.00 32 32 6.67 0.00 0.00

blrand401 500 1020 4.08 38.00 38 38 38.00 38 38 33.10 32 35 37.85 37 38 37.90 37 38 8.57 0.00 0.00

blrand102 500 1020 4.08 26.00 26 26 25.65 25 26 23.85 23 25 25.25 25 26 26.00 26 26 4.00 0.00 0.00

blrand252 500 1020 4.08 35.00 35 35 35.00 35 35 30.75 29 33 34.75 34 35 34.95 34 35 6.06 0.00 0.00

blrand402 500 1020 4.08 37.00 37 37 37.00 37 37 32.45 31 34 36.95 36 37 36.95 36 37 8.82 0.00 0.00

blsdeg101 500 1020 4.08 17.00 17 17 16.89 15 17 14.65 14 16 15.95 15 16 17.00 17 17 6.25 6.25 0.00

blsdeg251 500 1020 4.08 36.00 36 36 36.00 36 36 31.55 30 33 35.80 35 36 36.00 36 36 9.09 0.00 0.00

blsdeg401 500 1020 4.08 34.00 34 34 34.00 34 34 29.00 28 31 33.65 33 34 34.00 34 34 9.68 0.00 0.00

blsdeg102 500 1020 4.08 20.00 20 20 19.85 19 20 16.90 16 18 19.20 19 20 20.00 20 20 11.11 0.00 0.00

blsdeg252 500 1020 4.08 34.00 34 34 34.00 34 34 28.45 27 30 32.95 32 34 33.90 33 34 13.33 0.00 0.00

blsdeg402 500 1020 4.08 37.00 37 37 37.00 37 37 31.75 30 33 36.50 35 37 37.00 37 37 12.12 0.00 0.00

mesh1510 1 225 420 3.73 22.00 22 22 22.00 22 22 20.60 20 22 19.65 19 21 21.55 21 22 0.00 4.76 0.00

mesh1525 1 225 420 3.73 36.00 36 36 35.10 35 36 28.30 27 30 27.70 26 29 32.00 31 3320.00 24.14 9.09

mesh1540 1 225 420 3.73 43.00 43 43 42.50 42 43 30.10 28 32 35.30 32 38 38.80 37 4034.38 13.16 7.50

mesh1510 2 225 420 3.73 - - - 19.89 19 20 19.75 19 20 17.50 17 19 19.45 19 20 0.00 5.26 0.00

mesh1525 2 225 420 3.73 35.00 35 35 34.70 33 35 29.25 29 30 29.20 28 31 33.05 32 3416.67 12.90 2.94

mesh1540 2 225 420 3.73 42.00 42 42 41.35 41 42 29.80 29 32 34.00 33 36 37.60 36 3931.25 16.67 7.69

mesh2510 1 625 1200 3.84 - - - 47.25 46 48 40.70 40 42 32.85 29 36 41.00 39 4314.29 33.33 11.63

mesh2525 1 625 1200 3.84 - - - 68.30 67 69 48.40 47 51 45.00 42 49 55.55 54 5935.29 40.82 16.95

mesh2540 1 625 1200 3.84 - - - 88.74 88 90 54.35 53 58 57.70 53 61 69.30 67 7255.17 47.54 25.00

mesh2510 2 625 1200 3.84 - - - 44.33 43 46 40.05 38 42 30.10 28 33 37.90 36 40 9.52 39.39 15.00

mesh2525 2 625 1200 3.84 - - - 67.22 65 70 48.90 47 52 45.60 44 48 54.70 52 5934.62 45.83 18.64

mesh2540 2 625 1200 3.84 - - - 88.55 87 90 54.05 51 57 57.75 54 61 68.85 66 7157.89 47.54 26.76

steinb410 50 100 4.00 5.00 5 5 5.00 5 5 5.00 5 5 5.00 5 5 5.00 5 5 0.00 0.00 0.00

steinb425 50 100 4.00 12.00 12 12 12.00 12 12 12.00 12 12 12.00 12 12 12.00 12 12 0.00 0.00 0.00

steinb440 50 100 4.00 20.00 20 20 20.00 20 20 20.00 20 20 20.00 20 20 19.90 19 20 0.00 0.00 0.00

steinb1010 75 150 4.00 7.00 7 7 7.00 7 7 7.00 7 7 7.00 7 7 7.00 7 7 0.00 0.00 0.00

steinb1025 75 150 4.00 18.00 18 18 18.00 18 18 18.00 18 18 17.85 17 18 18.00 18 18 0.00 0.00 0.00

steinb1040 75 150 4.00 28.00 28 28 27.65 27 29 25.10 24 27 24.35 23 26 27.30 27 28 7.41 11.54 3.57

steinb1610 100 200 4.00 10.00 10 10 10.00 10 10 10.00 10 10 10.00 10 10 10.00 10 10 0.00 0.00 0.00

steinb1625 100 200 4.00 25.00 25 25 25.00 25 25 25.00 25 25 24.35 24 25 25.00 25 25 0.00 0.00 0.00

steinb1640 100 200 4.00 36.12 36 37 36.00 36 36 33.20 32 34 32.45 32 34 35.95 35 37 8.82 8.82 0.00

steinc610 500 1000 4.00 50.00 50 50 50.00 50 50 50.00 50 50 49.10 47 50 50.00 50 50 0.00 0.00 0.00

steinc625 500 1000 4.00125.00 125 125 122.55 121 124107.50 106 110 89.90 85 94104.95 102 10813.64 32.98 15.74

stienc640 500 1000 4.00145.84 144 147 140.40 139 142114.10 112 117109.80 106 117121.40 119 12525.64 25.64 17.60

steincc1110 500 2500 10.00 50.00 50 50 50.00 50 50 50.00 50 50 50.00 50 50 50.00 50 50 0.00 0.00 0.00

steinc1125 500 2500 10.00125.00 125 125 125.00 125 125 125.00 125 125 123.30 122 125 125.00 125 125 0.00 0.00 0.00

steinc1140 500 2500 10.00200.00 200 200 200.00 200 200 200.00 200 200 194.25 190 198200.00 200 200 0.00 1.01 0.00

steinc1610 500 12500 50.00 50.00 50 50 50.00 50 50 50.00 50 50 50.00 50 50 50.00 50 50 0.00 0.00 0.00

steinc1625 500 12500 50.00 - - - 125 125 125 125.00 125 125 125.00 125 125 125.00 125 125 0.00 0.00 0.00

steinc1640 500 12500 50.00 - - - 200 200 200 200.00 200 200 200.00 200 200 200.00 200 200 0.00 0.00 0.00

plan5010 50 135 5.40 5.00 5 5 5.00 5 5 5.00 5 5 5.00 5 5 5.00 5 5 0.00 0.00 0.00

plan5025 50 135 5.40 12.00 12 12 12.00 12 12 12.00 12 12 12.00 12 12 12.00 12 12 0.00 0.00 0.00

plan5040 50 135 5.40 20.00 20 20 20.00 20 20 20.00 20 20 20.00 20 20 19.90 19 20 0.00 0.00 0.00

plan10010 100 285 5.70 10.00 10 10 10.00 10 10 10.00 10 10 10.00 10 10 10.00 10 10 0.00 0.00 0.00

plan10025 100 285 5.70 25.00 25 25 25.00 25 25 25.00 25 25 25.00 25 25 25.00 25 25 0.00 0.00 0.00

plan10040 100 285 5.70 37.00 37 37 37.05 37 38 35.80 35 37 34.00 33 36 36.00 35 37 2.70 5.56 2.70

plan20010 200 583 5.83 20.00 20 20 20.00 20 20 20.00 20 20 20.00 20 20 20.00 20 20 0.00 0.00 0.00

pan20025 200 583 5.83 - - - 48.95 48 50 46.50 46 48 41.80 39 43 45.95 45 48 4.17 16.28 4.17

plan20040 200 583 5.83 - - - 60.65 58 62 52.95 52 56 49.35 47 51 55.70 54 5810.71 21.57 6.90

plan50010 500 1477 5.91 50.00 50 50 50.00 50 50 50.00 50 50 44.95 42 47 50.00 50 50 0.00 6.38 0.00

plan50025 500 1477 5.91 - - - 92.29 90 94 78.15 76 80 60.95 57 65 78.20 77 8017.50 44.62 17.50

plan50040 500 1477 5.91 - - - 122.31 119 124 92.60 90 95 82.85 78 86100.15 97 10230.53 44.19 21.57

TABLE I: Message-passing and multi-start greedy performances. Columns 1-4 give the characteristics of the benchmark.For
each algorithm, columns 1-3 represent the average, the minimum and the max number of accommodated paths over 20 runs of
a given set of commodity instance respectively. ACO and LS performances are reported in [31, 36]. Performance comparison

between MP and the other algorithms is given in the three lastcolumns, representing the performance ratio
100· (MBP

acc/M
alg
acc− 1) wherealg indicates the algorithm used (MSG, ACO and LS respectively). We use asMMP

acc the best one
betweenMP with and without reinforcement.
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