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Abstract. In community detection, datasets often suffer a sampling bias
for which nodes which would normally have a high affinity appear to have
zero affinity. This happens for example when two affine users of a social
network were not exposed to one another. Community detection on this
kind of data suffers then from considering affine nodes as not affine.
To solve this problem, we explicitly model the (non-)exposure mecha-
nism in a Bayesian community detection framework, by introducing a
set of additional hidden variables. Compared to approaches which do
not model exposure, our method is able to better reconstruct the input
graph, while maintaining a similar performance in recovering communi-
ties. Importantly, it allows to estimate the probability that two nodes
have been exposed, a possibility not available with standard models.
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1 Introduction

Modeling the mechanisms of how nodes interact in networks is a relevant prob-
lem in many applications. In social networks, we observe a set of interactions
between people, and one can use this information to cluster them into commu-
nities based on some notion of similarity [1]. Broadly speaking, the connections
between users can be used to infer users’ membership, and this in turns de-
termines the likelihood that a pair of users interacts. Real networks are often
sparse, people interact with a tiny amount of individuals, compared to the large
set of possible interactions that they could in principle explore. Traditionally,
models for community detection in networks treat an existing link as a positive
endorsement between individuals: if two people are friends in a social network,
this means they like each other. In assortative communities, where similar nodes
are more likely to be in the same group [2,3], this encourages the algorithm to
put these two nodes into the same community. On the contrary, a non-existing
link influences the model to place them into different communities, as if the
two non-interacting individuals were not compatible. However, many of these
non-existing links (–especially in large-scale networks–) are absent because the
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individuals are not aware of each other, rather than because they are not inter-
ested in interacting. This is a general problem in many network data sets: we
know that interacting nodes have a high affinity, but we can not conclude the
contrary about non-interacting nodes.
This problem has been explored in the context of recommender systems [4,5,6,7],
where it is crucial to learn what items that a user did not consume could be of
interest. In this context, items’ exposure is often modeled by means of propensity
scores or selection biases assigned to user-item pairs that increase the probability
of rare consumption events.
It is not clear how to adapt these techniques to the case of networks of interacting
individuals, hence the investigation of this problem in the context of networks
is still missing. Existing approaches partially account for this by giving more
weight to existing links, as in probabilistic generative models that use a Pois-
son distribution for modeling the network adjacency matrix [8,9,10,11]. These
methods are effective, but may be missing important information contained in
non-existing links.

2 Community detection with exposure

We address this problem by considering a probabilistic formulation that assigns
probabilities to pairs of nodes of being exposed or not. These are then integrated
into standard probabilistic approaches for generative networks with communi-
ties. For this, as a reference model we consider MultiTensor [8], as it is a flexible
model that takes in input a variety of network structures (e.g. directed or undi-
rected networks, weighted or unweighted) and detects overlapping communities
in a principled and scalable way.

2.1 Representing exposure

Consider an N × N observed network adjacency matrix A(o), where A(o)
ij ≥ 0

is the weight of the interaction between nodes i and j, this is the input data.
For instance, A(o)

ij could be the number of times that i and j met or exchanged
messages. If a link A

(o)
ij exists, this indicates an affinity between individuals i

and j, triggered by both individuals’ inner preferences. If the link does not exist
(A(o)

ij = 0), one usually assumes that this indicates a lack of affinity between i and
j. However, the link might not exist simply because i and j never met. This is the
case in social networks, where an ego might follow an alter because of personal
preference, but this choice is subject to being exposed to the alter in the first
place. This suggests that the event of being exposed to someone influences the
patterns of interactions observed in networks. We are interested in incorporating
this notion of exposure in modeling network data, and investigate how results
change.

To represent this, we postulate the existence of a ground-truth adjacency
matrix, A(g), that indicates the affinity between nodes i and j regardless of
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Fig. 1. Diagram of the exposure mechanism. On the left we have the full graph (A(g)).
We then set to zero the probability of some connections through a mask Z (center),
and reconstruct the true graph and communities based solely on the visible links, A(o)

(right).

whether the two nodes were exposed to each other (Fig. 1–left). In addition, we
introduce a dilution matrix Z (red crosses in Fig. 1–center), with values Zij = 0, 1
indicating whether nodes i and j were exposed (Zij = 1) or not (Zij = 0). The
observed matrix is then the element-wise product of the ground truth network
times the dilution matrix,

A(o) = A(g) ⊗ Z , (1)

where ⊗ indicates an element-by-element multiplication. A diagram of the re-
sulting matrix is shown in Fig. 1–right. Through this representation, a zero-entry
A

(o)
ij = 0 can be attributed to A(g)

ij = 0 (lack of affinity), Zij = 0 (lack of expo-
sure) or both.

Standard models for community detection do not account for exposure, there-
fore they treat a zero-entry A(o)

ij = 0 as a signal for non-affinity. We aim at mea-
suring both communities and exposure, given the observed data A(o)

ij . In other
words, for a given node i, we would like to estimate its community member-
ship and for a given pair (i, j) we want to estimate the probability that they
were exposed to each other. For simplicity, we show derivations for the case of
undirected networks, but similar ones apply to directed ones.

2.2 The ground truth adjacency matrix

In our notation, we use θ to denote the latent variables affecting community
detection, i.e. determining the probability of observing an interaction between
i and j given that they have been exposed. We will treat the case of symmetric
edges, A(g)

ij = A
(g)
ji , and provide an extension to asymmetric interactions in

App. A. Following the formalism of Ref. [8], we assign a K-dimensional hidden
variable ui to every node i. Since different communities may interact in different
ways, we also introduce a K × K affinity matrix w, regulating the density of
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interactions between different groups. The latent variables related to the ground
truth matrix are then θ = (u,w).

We express the expected interaction between two nodes through a parameter

λij =

K∑
k,q

uikujqwkq , (2)

and extract the elements of A(g) from a Poisson distribution with mean λij ,

P (A
(g)
ij |ui, uj , w) = Pois

(
A

(g)
ij ;λij

)
=
e−λijλ

A
(g)
ij

ij

A
(g)
ij !

. (3)

We then assume conditional independence between different pairs of edges given
the latent variables P (A(g)|u, u, w) =

∏
i<j P (A

(g)
ij |ui, uj , w), but this can be

generalized to more complex dependencies [12,13,14]. We do not explore this
here.

2.3 The observed adjacency matrix

The observed adjacency matrix depends on whether two nodes were exposed
or not, through the matrix Z. If Zij = 1, the two nodes are exposed, and the
edge comes from the ground truth matrix, i.e. P (A(o)

ij |Zij = 1, θ) = P (A
(g)
ij |θ) =

Pois(A(g)
ij ;λij). If Zij = 0, thenA(o)

ij = 0 regardless of λij . Therefore, the elements
of A(o) are extracted from the distribution

P (A
(o)
ij |Zij , θ) = Pois(A(o)

ij ;λij)
Zij δ(A

(o)
ij )1−Zij . (4)

Since Zij is binary, we assign it a Bernoulli prior with parameter µij ,

P (Z|µ) =
∏
i<j

P (Zij |µij) =
∏
i<j

(µij)
Zij (1− µij)1−Zij . (5)

The parameter µij will depend on some latent variable related to nodes i and j.
There are several possible choices for that. Here, we consider a simple setting:

µij = µi µj , (6)
µi ∈ [0, 1] , (7)

This allows to keep the number of parameters small and has an easy interpre-
tation. In fact, the parameter µi acts as the propensity of an individual to be
exposed to others: the higher its value, the higher the probability that node i will
be exposed to other nodes. This way of modeling exposure only adds one more
parameter per node, allowing for heterogeneous behaviors among users while
keeping the model compressed. The full set of variables that need to be inferred
consists of the u, the w and the µ variables, which amounts to NK +K2 + N
parameters, which is one order of magnitude smaller than the N2 elements of
A(o).
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2.4 Inference and Expectation-Maximization

Given the data A(o), our goal is to first determine the values of the parameters
θ, which fixes the relationship between the hidden indicator Zij and the data,
and then to approximate Zij given the estimated θ.

We perform this using statistical inference as follows. Consider the posterior
distribution P (Z, θ|A(o)). Since the dilution Z is independent from the param-
eters θ and all the edges are considered conditionally independent given the
parameters, Bayes’ formula gives

P (Z, θ|A(o)) =
P (A(o)|Z, θ)P (Z|µ)P (θ)

P (A(o))
. (8)

Summing over all the possible indicators we have:

P (θ|A(o)) =
∑
Z

P (Z, θ|A(o)) =

N∏
i<j

∑
Zij=0,1

P (Zij , θ|A(o)) , (9)

which is the quantity that we need to maximize to extract the optimal θ. It is
more convenient to maximize its logarithm, as the two maxima coincide. We use
Jensen’s inequality:

logP (θ|A(o)) = log
∑
Z

P (Z, θ|A(o)) ≥
∑
Z

q(Z) log
P (Z, θ|A(o))

q(Z)
:= L(q, θ, µ)

(10)
where q(Z) is any distribution satisfying

∑
Z q(Z) = 1, we refer to this as the

variational distribution.
Inequality (10) is saturated when

q(Z) =
P (Z, θ|A(o))∑

Z

P (Z, θ|A(o))
, (11)

hence this choice of q maximizes L(q, θ, µ) with respect to q. Further maximizing
it with respect to θ gives us the optimal latent variables. This can be done in
an iterative way using Expectation-Maximization (EM), alternating between
maximizing with respect to q using Eq. (11) and then maximizing L(q, θ, µ)
with respect to θ and µ.

To obtain the updates for the parameters we need to derive the equations
that maximize L(q, θ, µ) with respect to θ and µ and set these derivatives to
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zero. This leads to the following closed-form updates:

uik =

∑
j Qij Aij

∑
q ρijkq∑

j Qij
∑
q ujqwkq

(12)

wkq =

∑
i,j Qij Aijρijkq∑
i,j Qij uikujq

(13)

ρijkq =
uikujqwkq∑
k,q uikujqwkq

(14)

µi =

∑
j Qij∑

j
(1−Qij)µj

(1−µi µj)

, (15)

where we defined Qij =
∑

Z Zij q(Z) the expected value of Zij over the varia-
tional distribution.

As µi appears on both sides of Eq. (15), this can be solved with root-finding
methods bounding µi to the interval [0, 1], to be compatible as a parameter of
the Bernoulli prior.3

Finally, to evaluate q(Z), we substitute the estimated parameters inside
Eq. (8), and then into Eq. (11) to obtain:

q(Z) =
∏
i<j

Q
Zij

ij (1−Qij)(1−Zij) , (16)

where
Qij =

Pois(Aij ;λij)µij
Pois(Aij ;λij)µij + δ(Aij) (1− µij)

. (17)

In other words, the optimal q(Z) is a product
∏
i<j qij(Zij) of Bernoulli distri-

butions qij with parameters Qij . This parameter is also a point-estimate of the
exposure variable, as for the Bernoulli distribution Qij = Eq [Zij ].
The algorithmic EM procedure then works by initializing at random all the pa-
rameters and then iterating Eqs. (12) to (15) for fixed q, and the calculating
Eq. (17) given the other parameters, and so on until convergence of L. The
function L is not convex, hence we are not guaranteed to converge to the global
optimum. In practice, one needs to run the algorithm several times with different
random initial parameters’ configurations and then select the run that leads to
best values of L. In the following experiments we use 5 of such realizations.

3 Results

We test our algorithm on synthetic and real data, and compare it to its formu-
lation without exposure, i.e. the MultiTensor algorithm described in Ref. [8].
In the following, we refer to our algorithm as EXP, and we use NoEXP for the
algorithm that does not utilize exposure.
3 In practice, we limit the domain of µi to the interval [ε, 1 − ε], where ε is a small
hyperparameter chosen to avoid numerical overflows of L. To maintain the model
interpretable in terms of exposure, at the end of the optimization we set to zero each
µi ≡ ε and to one each µi ≡ 1− ε.
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3.1 Synthetic data

Synthetic data experiments are particularly interesting, because we can validate
our model performances on the ground truth values. The creation of a synthetic
dataset follows the generative model described in Sect. 2.1:

1. For a graph with N = 500 nodes, we generate the latent parameters θ
and µ as follows. We draw overlapping communities by sampling ui from a
Dirichlet distribution with parameter αk = 1, ∀k; we choose an assortative
w by selecting the off-diagonal entries to be 0.001 times smaller then the
on-diagonal ones. We then vary K ∈ [3, 5, 8]. We draw µi from a Beta dis-
tribution Beta(µi; 2, β), where we vary β ∈ [0.1, 10] to tune the fraction of
unexposed links.

2. Sample A(g)
ij from a Poisson distribution with means λij =

∑
k,q uikujqwkq.

3. Sample Z from a Bernoulli distribution of means µij = µiµj .
4. Calculate the matrix A(o) = A(g) ⊗Z. This matrix has on average 〈k〉 links

per node.

We repeat this procedure 10 times for each set of parameters to obtain different
random realizations of synthetic data. We then apply the EXP and NoEXP
algorithms to A(o) to learn the parameters and study the performance as a
function of 〈k〉, controlling the density of observed edges.

Reconstructing hidden links We start by testing the ability of the model to pre-
dict missing links, a procedure often used as a powerful evaluation framework
for comparing different models [15,16]. We use a 5-fold cross-validation scheme
where we hide 20% of the edges in A(o) and train the model on the remaining
80%. Performance is then computed on the hidden 20% of the edges. As a per-
formance evaluation metric we measure the area under the receiver operating
characteristic curve (AUC) between the inferred values and the ground truth
used to generate A(o) on the test set. The AUC is the probability that a ran-
domly selected existing edge is predicted with a higher score than a randomly
selected non-existing edge. A value of 1 means optimal performance, while 0.5 is
equivalent to random guessing. As the score of an edge A(o)

i,j we use the quan-
tity Qij λij for EXP, and λij for NoEXP. In both cases, these are the expected
values of A(o)

ij using the estimates of the latent parameters and, for EXP, over the
inferred q(Z). We find that the EXP algorithm outperforms NoEXP by a large
margin, which increases as the network becomes more dense, going above 10%,
as shown in Fig. 2–left. At low densities, the performance increase of the EXP
algorithm is narrow for models with a large number of communities, while at
large densities it becomes bigger and independent of the number of communities.
This result suggests that EXP is capturing the input data better–consistently
for varying dilution densities–than a model that does not account for exposure.

Guessing unexposed links Our algorithm not only allows us to predict missing
edges but also gives interpretable estimates of the probability of exposure be-
tween nodes. These probabilities follow naturally from the posterior distribution
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on Z, which is the Bernoulli distribution in Eq. (16). Standard algorithms as
NoEXP cannot estimate this. We can use the mean value Qij as in Eq. (17)
as a score of an edge to compute the AUC between inferred and ground truth
values of Z, analogously to what was done for reconstructing A(o). We report in
Fig. 2–center the ability of EXP to reconstruct the matrix Z, i.e. to infer which
edges were removed in the dilution step. The AUC varies between 0.65 and 0.75,
well above the random baseline of 0.5. We notice how the values increase as the
density of connection increases, but stay above 0.65 even at small density values,
where reconstruction is more challenging.

Inferring communities In Fig. 2–right, we can see that EXP and NoEXP show
similar performances in reconstructing communities. From this plot we can also
notice how reconstruction improves for larger densities and fewer communities.
The similar performances may be due to selecting a simple prior as in Eq. (6).
For a more structured prior, the inferred communities would likely change and
potentially improve. Given this similar community detection abilities but the
better predictive power in reconstructing A(o), we argue that the learned Qij ’s
are important to boost prediction compared to a model that does not properly
account for exposure. This is true even for a simple prior.

Fig. 2. Performance of the EXP and NoEXP algorithms on synthetic data. The
matrix A(g) has K = 3, 5, 8 communities and N = 500. The exposure mask Z is
extracted from a binomial distribution with parameter µij = µiµj . Left: AUC between
the inferred values and the ground truth used to generate A(o). Center: AUC of the
reconstruction of the exposure mask Z. Right: Cosine similarity between inferred and
ground truth communities. Inset: We show the same data as in the main plots by
rescaling the average number of links by the number of communities.

Dependence on the number of communities All of these metrics exhibit a scaling
w.r.t. the variable 〈k〉/K, as can be seen in the insets of Fig. 2. This suggests
that the curves seem to be independent of the number of communities when
accounting for this rescaling. Thus observing the behavior for one particular
value of K should be informative enough to understand how the model behaves
for various densities.
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Fig. 3. Suggesting unexposed compatible nodes. For each node i, we suggest the 20 links
with highest λij inferred by our algorithm from the non-observed links where A(o)

ij = 0.
We show the P@20 averaged across all nodes and compare with a uniform-at-random
baseline (random) where 20 nodes are selected at random among the available ones.
Error bars are standard deviations. Here we use a synthetic network generated as in
Sect. 3.1 with N = 500 and K = 5.

Suggesting good matches Since the EXP algorithm is good at predicting which
nodes were removed from the original graph (Fig. 2–center), we can use this to
address the following question: Is the EXP algorithm able to suggest two nodes
that have high affinity despite not having any connection? In other words, we are
asking whether we are able to find links that in A(o) are absent, but have a high
expected value in A(g). To test this ability, we take for each node i: a) all the
possible neighbors j such that A(o)

ij = 0; b) select among them the 20 with the
largest inferred affinity λij ; and c) check how many of those are present in A(g).
We call Precision@20 (P@20) the fraction of links which were correctly inferred,
averaging across all nodes. In Fig. 3 we show that for intermediate dilution
values, the P@20 reaches around 80%, and outperforms random guessing at any
value of the dilution. Notice that random guessing in not constant in 〈k〉. This is
because this depends on the number of missing links in A(o), and those depend
both on the density of A(g) and on the dilution mask Z. Specifically, P@20 of
the random baseline goes as (〈k〉g−〈k〉)/(N −〈k〉), where 〈k〉g is degree of A(g).
This is a decreasing function of 〈k〉, for 〈k〉g < N .

3.2 Real data

To test our algorithm on real data, we use the American College Football Net-
work (ACFN) dataset provided in Ref. [17], which represents the schedule of
Division I games for the season of the year 2000. Each node in the data set cor-
responds to a team, and each link is a game played between teams. Teams are
grouped in conferences, and each team plays most of its games within a same
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Fig. 4. Left: Performance in predicting missing links of the EXP and NoEXP algo-
rithms on the ACFN dataset. Different marker shapes correspond to different numbers
of communities, while blue (red) markers denote instances where EXP (NoEXP) has
better performance than NoEXP (EXP). There is a total of 150 markers, denoting
5 folds repeated for 10 random seeds for each value of K. Right: Top 10 games that
are recommended by the EXP algorithm with K = 11, which were not played in the
AFCN data set. Different colors indicate different conferences.

conference (though not all teams within a conference encounter each other). Con-
ferences group teams of similar level, but another main criterion is geographic
distance. Therefore, this dataset has a community structure which is not based
on affinity. Here, affinity indicates that teams are of similar level, and therefore
should play in the same conference, if conferences were based solely on affinity.

We randomly hide 20% of the links in the ACFN and check how well the
EXP and NoEXP algorithms are able to reconstruct which links are missing.
We run the algorithm with various number of communities K = 9, 11, 13, finding
the best result at K = 11, which is also the number of conferences in the dataset.
In Fig. 4–left we show a scatter plot of the AUC trial-by-trial. This reveals a
superior performance of the EXP method which outperforms NoEXP in 142 out
of 150 trials (5 fold per 10 random seeds for each of K = 9, 11, 13). This suggest
that EXP is better capturing the data.

In Fig. 4–right we show the top 10 recommendations that we can extract
from the EXP algorithm by taking, among the links missing from A(o), those
with smallest predicted exposure Qij and the highest affinity λij . Although,
in the absence of ground truth, we are not able to assess the validity of these
suggestions, we note that all the suggested links represent unplayed games within
the the same conference and that games within teams in different conferences
were ranked lower.

4 Conclusions

In networks, nodes that would enjoy a high mutual affinity often appear discon-
nected for reasons that are independent of affinity. This is the case, for example,
with people or entities in social networks that have never met, or due to some
kind of sampling bias. This introduces a sampling bias in the datasets used for
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community detection. We studied this problem through a general framework,
where we postulate that affinity in terms of compatibility of communities is not
enough in order to explain the existence of a link, but rather a mechanism of
exposure between nodes should be taken into account as well.

We proposed a principled probabilistic model, EXP, that takes into account
this type of bias and is able to estimate the probability that two non-connected
nodes are exposed while jointly learning what communities they belong to. We
tested the EXP algorithm against a version of itself that does not account for
exposure, NoEXP. On artificial data, where we could validate our results on
ground truth parameters and unobserved ground truth data, we found that EXP
is as good as NoEXP in learning communities, but it outperforms it when it
comes to reconstructing missing links. In addition, the EXP approach allows us
to satisfactorily infer which links remained unexposed, an estimate that cannot
be done with standard method as, for example, NoEXP. We finally tested our
algorithm on a real dataset which has a hidden structure that is independent of
the affinity between links, finding that also here the EXP algorithm is better at
reconstructing missing links.

The principled approach that we used based on statistical inference is gen-
eral. It can be made more specific depending on the application at hand. For
example, we considered the simple case where exposure only depends on each
individual’s propensity towards being exposed. However, this could depend on
a more fine structure of society, and we could think of introducing an exposure
mechanism that mimics the presence of communities which are independent
of affinity (e.g. different schools, or different classes in a school). Allowing for
community-dependent exposure has the potential to better mimic the kind of
dilution that occurs in many real datasets. This can also apply to the AFCN
dataset, where a better way to model exposure may be one that allows a struc-
ture that is able to account for different conferences or geographical regions. We
leave this for future work. Additionally, exposure could be driven by covariate
information on nodes, as also used in recommender systems [4]. This could be
integrated using variants of community detection methods that account for this
extra information [18,19,20]. Exposure could also change through time, and it
could also have some dependence on the structure of A(g). These are all inter-
esting avenues for future work.
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A Asymmetric links

Here, we show how to extend the EXP model to asymmetric networks (Aij 6=
Aji), while still maintaining a symmetric structure for the exposure (µij = µji =
µiµj).

We introduce an extra set of N ×K-dimensional hidden variables, vik, which
have the same structure of the uik. The latent variable set is now θ = (u, v, w).
This allows us to replace Eq. (2) with an asymmetric Poisson parameter

λij =

K∑
k,q

uikvjqwkq . (18)

As a result, Eqs. (12), (13), (14) and (15) are replaced by

uik =

∑
j Qij Aij

∑
q ρijkq∑

j Qij
∑
q vjqwkq

(19)

viq =

∑
j Qij Aij

∑
k ρijkq∑

j Qij
∑
k vjqwkq

(20)

wkq =

∑
i,j Qij Aijρijkq∑
i,j Qij uikvjq

(21)

ρijkq =
uikvjqwkq∑
k,q uikvjqwkq

(22)

µi =

∑
j Qij∑

j
(1−Qij)µj

(1−µi µj)

, (23)

where now we also take into account the updates for the new hidden variables,
vik.
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