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Hypergraphs, encoding structured interactions among any number of system units, have recently
proven a successful tool to describe many real-world biological and social networks. Here we propose
a framework based on statistical inference to characterize the structural organization of hypergraphs.
The method allows to infer missing hyperedges of any size in a principled way, and to jointly
detect overlapping communities in presence of higher-order interactions. Furthermore, our model
has an efficient numerical implementation, and it runs faster than dyadic algorithms on pairwise
records projected from higher-order data. We apply our method to a variety of real-world systems,
showing strong performance in hyperedge prediction tasks, detecting communities well aligned with
the information carried by interactions, and robustness against addition of noisy hyperedges. Our
approach illustrates the fundamental advantages of a hypergraph probabilistic model when modeling
relational systems with higher-order interactions.

INTRODUCTION

Over the past twenty years, networks have allowed to
map and characterize the architecture of a wide variety
of relational data, from social and technological systems
to the human brain (1). Despite their success, traditional
graph representation are unable to provide a faithful rep-
resentation of the patterns of interactions occurring in
the real-world. Collections of nodes and links–networks–
can only properly encode dyadic relations. Yet, in the
last few years systems as diverse as cellular networks (2),
structural and functional brain networks (3, 4), ecosys-
tems (5), human face-to-face interactions (6) and col-
laboration networks (7), have shown that a large frac-
tion of interactions occurs among three or more nodes
at a time. These higher-order systems are hence best de-
scribed by different mathematical frameworks such as hy-
pergraphs (8), where hyperedges of arbitrary dimensions
may encode structured relations among any number of
system units (9–11). Interestingly, providing a higher-
order description of the system interactions has been
shown to lead to the emergence of new collective phe-
nomena (12) in diffusive (13, 14), synchronization (15–
19), spreading (20–22) and evolutionary (23) processes.

To properly describe the higher-order organization of
real-world networks, a variety of growing (24, 25) and
equilibrium models, such as generalized configuration
models (26–28) have been proposed. Tools from topolog-
ical data analysis have allowed to obtain insights into the
higher-order organization of real-world networks (29, 30),
and methods to infer higher-order interactions from pair-
wise records have been suggested (31). Finally, several
powerful network metrics and ideas have been extended
beyond the pair, from higher-order clustering (32) and
centrality (33, 34) to motifs (35) and network backbon-
ing (36).

Despite a few recent contributions (37–39), how to de-
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fine and identify the mesoscale organization of real-world
hypergraphs is still a largely unexplored topic. Here,
we propose a new principled method to extract higher-
order communities based on statistical inference. More
broadly, our approach is that of generative models, which
incorporate a priori community structure by means of
latent variables, inferred directly from the observed in-
teractions (40–42). Beyond its efficient numerical imple-
mentation, our model has several desirable features. It
detects overlapping communities, an aspect that is miss-
ing in current approaches of community detection in hy-
pergraphs and that is arguably better representative of
scenarios where nodes are expected to belong to multiple
groups. It also provides a natural measure to perform
link prediction tasks, as it outputs the probability that a
given hyperedge exists between any subset of nodes. Sim-
ilarly, it allows to generate synthetic hypergraphs with
given community structure, an ingredient that can be
given in input or learned from data. Moreover, our ex-
plicit higher-order approach is not only more grounded
theoretically, but also more efficient than applying graph
algorithms to higher-order data projected into pairwise
records.
We apply our method to a variety of real-world sys-
tems, showing that it recovers communities more ro-
bustly against noisy addition of large hyperedges than
methods on projected pairwise data, it achieves high per-
formance in predicting missing hyperedges, and it allows
to determine the influence of hyperedge size in such pre-
diction tasks. We also illustrate how our higher-order
approach detects communities that are more aligned
with the information carried by hyperedges than what
is recorded by node attributes. Through these examples,
we illustrate how a principled higher-order probabilistic
approach can shed light on the role that higher-order in-
teractions play in real-world complex systems.
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MODEL

Here, we introduce Hypergraph-MT, a probabilistic gen-
erative model for hypergraphs with mixed-membership
community structure. Based on a statistical inference
framework, our model provides a principled, efficient and
scalable approach to extract overlapping communities in
networked systems characterized by the presence of in-
teractions beyond the pair.

At its core, our approach assumes that nodes be-
long to different groups in different amounts, as spec-
ified by a set of membership vectors. These member-
ships then determine the probability that any subset of
nodes is connected with a hyperedge. We denote a hy-
pergraph with N nodes V = {i1, . . . , iN} and E hyper-
edges E = {e1, . . . , eE} as H(V, E). Mathematically, this
can be represented as an adjacency tensor A with entries
Ai1,...,id equal to the weight of a d-dimensional interac-
tion between the nodes i1, . . . , id. For instance, for con-
tact interactions, Ai1,...,id could be the number of times
that nodes i1, . . . , id were in close contact together.

Given these definitions, we can specify the likelihood of
observing the hypergraph given a set of latent variables
θ, which include the membership vectors. This relies on
modelling P (Ai1,...,id |θ), the probability of observing a
hyperedge given θ. We model this probability as:

P (Ai1,...,id |θ) = Pois(Ai1,...,id ;λi1,...,id) , (1)

where λi1,...,id =
∑
k1,...,kd

ui1k1 . . . uidkdwk1,...,kd . The

set of latent variables is defined by θ = (u,w), where u is
a N×K-dimensional community membership matrix and
w is an affinity tensor, which captures the idea that an
interaction is more likely to exist between nodes of com-
patible communities. If only pairwise interactions exist,
the affinity matrix has dimension K × K. Therefore,
the problem reduces to the traditional network case and
can be efficiently solved (41). When higher-order inter-
actions are present, the dimension of the affinity tensor
w can become arbitrarily large depending on the size de
of a hyperedge e, i.e., the number of nodes present in it.
In fact, w has as many entries as all the possible de-way
interactions between all K groups. For instance, in a
hypergraph with only 2-way and 3-way interactions, we
have w = [w(2), w(3)] with w(2) of dimension K ×K and
w(3) of dimension K ×K ×K.

The question is thus how to reduce the dimension of w.
A relevant choice that overcomes these problems is that
of assortativity (43), implying that a hyperedge is more
likely to exist when all nodes in it belong to the same
group. This captures well situations where homophily,
the tendency of nodes with similar features to be con-
nected to each other, plays a role, as observed in social
or biological networks (41, 44). Mathematically, the only
non-zero elements of w are the “diagonal” ones, that is:

wk1,...,kd = δk1,...,kdwk1,...,kd . (2)

With this, we obtain a matrix w of dimension D × K,
where D = maxe∈E de is the maximum hyperedge size
in the dataset. In principle, one could envisage other
ways to restrict w to control its dimension. However,
we found that the choice in Eq. (2) provides a natural
interpretation, results in good prediction performance on
both real and synthetic datasets, and is computationally
scalable. A similar problem of dimensionality reduction
has been tackled in (39), which investigated the more
constrained case of hard-membership models.

Putting all together, we model the likelihood of the
hypergraph as:

P (A|θ) =
∏
e∈Ω

e−λe
λAe
e

Ae!
, (3)

with λe =
∑
k

wdek
∏
i∈e

uik , (4)

where Ω = {e|e ⊆ V, de ≥ 2} is the set of all potential
hyperedges. In practice, we can reduce this space by
considering only the possible hyperedges of a certain size
lower or equal than the maximum observed size D. In
Eq. (3) we assumed conditional independence between
hyperedges given the latent variables, a standard as-
sumption in these types of models. Such a condition
could in principle be relaxed following the approaches of
Refs. (45–47), we do not explore this here.

Having defined Eq. (3), the goal is to infer the latent
variables u and w given the observed hypergraph A. To
infer the values of θ = (u,w), we consider both maximum
likelihood estimation (assuming uniform priors on the pa-
rameters) and maximum a posteriori estimation (assum-
ing non-uniform priors). The derivations are similar and
rely on an efficient expectation-maximization (EM) algo-
rithm (48) that exploits the sparsity of the dataset, as
detailed in Section A.

We obtain the following algorithmic updates for the
membership vectors:

uik =

∑
e∈E Bie ρek∑

e∈Ω|i∈e wdek
∏
j∈e|j 6=i ujk

, (5)

where Bie is equal to the weight of the hyperedge e to
which the node i belongs (it is an entry of the hypergraph
incidence matrix) and ρ is a variational distribution de-
termined in the expectation step of the EM procedure.
The numerator of Eq. (5) can be computed efficiently, as
we only need the non-zero entries of the incidence matrix,
which is typically sparse. Instead, computing the denom-
inator can be prohibitive depending on the value of D,
the maximum hyperedge size. This is due to the summa-
tion over all possible hyperedges in Ω, which requires ex-
tracting all possible combinations

(
N
d

)
, for d = 2, . . . , D.

This problem is not present in the case of graphs, as this
summation would be over N2 terms at most. This issue
clearly highlights the importance of algorithmic efficiency
in handling hypergraph data, an aspect that cannot be
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N E EG M MG 〈k〉 s(k) 〈d〉 s(d) D % d = 2 % d > 2 ∈ G K

High school 327 7, 818 5, 818 172, 035 189, 928 55.6 27.1 2.3 0.5 5 70.3% 88.5% 9

Primary school 242 12, 704 8, 317 106, 879 127, 886 127.0 55.2 2.4 0.6 5 61.0% 87.5% 11

Workplace 92 788 755 9, 645 9, 831 17.7 8.6 2.1 0.3 4 94.2% 88.2% 5

Hospital 75 1, 825 1, 139 27, 835 32, 788 59.1 49.0 2.4 0.6 5 60.7% 95.1% 4

Gene-Disease 4, 642 2, 738 55, 795 4, 131 114, 444 1.7 3.6 5.8 5.2 25 32.4% 0.6% 25

Justice 38 2, 826 264 15, 040 190, 790 366.7 203.6 4.9 1.7 9 7.6% 81.8% 2

House bills 1, 494 41, 362 360, 086 47, 212 2, 451, 751 245.8 251.6 8.9 6.6 24 18.5% 2.1% 2

Senate bills 293 19, 872 22, 157 27, 300 732, 561 482.0 396.9 7.1 5.4 24 16.5% 14.8% 2

House committees 289 106 2, 535 111 4, 312 0.7 2.0 8.6 3.6 18 0.9% 0.0% 2

Senate committees 282 275 12, 761 289 41, 008 16.2 12.6 16.6 6.0 25 0.0% 0.0% 2

Walmart 1, 025 3, 553 8, 029 5, 112 13, 769 9.8 16.7 2.8 1.2 11 51.0% 7.0% 10

Trivago 6, 687 33, 963 69, 875 40, 280 115, 533 13.9 13.8 2.7 1.3 26 59.6% 16.1% 36

Table. 1: Summary of higher-order datasets. Shown are the number of nodes (N), number of hyperedges in
the hypergraph (E) and in the graph (EG), number of weighted hyperedges in the hypergraph (M) and in the
graph (MG), mean node degree (〈k〉), SD of node degree (s(k)), mean hyperedge size (〈d〉), SD of hyperedge
size (s(d)), maximum hyperedge size (D), percentage of pairwise interactions (% d = 2), percentage of pairwise
interactions in the 2-combination set of hyperedges of size bigger than 2 that are already in the graph (%
d > 2 ∈ G), and number of communities (K).

overlooked to make a model work in practice.
We propose a solution to this problem that reduces

the computational complexity to O(NDK) and makes
our algorithm efficient, scalable and applicable in prac-
tice. The key is to rewrite the summation over Ω such
that we have an initial value that can be updated at

cost O(1) after each update u
(t)
ik → u

(t+1)
ik , which can be

done in parallel over k = 1, . . . ,K. This formulation is
explained in details in Section A, where we also show
how to edit the updates in Eq. (5) by imposing sparsity
(with a proper prior distribution) or by constraining the
membership vectors to be probability vectors such that∑
k uik = 1. In both cases, we get a constant term added

in the denominators of the updates.
Finally, the updates of the affinity matrix are given by:

wdk =

∑
e∈E|de=dAe ρek∑

e∈Ω|de=d

∏
j∈e ujk

. (6)

These are also computationally efficient to implement
and can be updated in parallel. Further details are in
Section A, where we also provide a pseudocode for the
whole inference routine (Algorithm 1).

RESULTS

We analyze hypergraphs derived from empirical data
from various domains. For each one, we report a diverse
range of structural properties such as number of nodes,
hyperedges and their sizes, as detailed in Table 1.
Moreover, the datasets provide node metadata, which

we use to fix the number of communities K, aiming to
compare the resulting communities with this additional
information. For further details on the datasets, see
Section C. For each hypergraph, we run Hypergraph-MT

ten times with different random initialization and select
the result with the highest likelihood. For comparison,
we run the model on two baselines structures obtained
from the same empirical data: a graph obtained from
clique expansions of each hyperedge (Graph-MT), where

a hyperedge of size d is decomposed in d(d−1)
2 unordered

pairwise interactions; a graph obtained using only
hyperedges with de = 2 (Pairs-MT). Notice that running
our model on graphs reduces to MULTITENSOR–the
model presented in (41)–with an assortative affinity
matrix. As a remark, we use interchangeably the
terms graph or network to refer to the data with only
pairwise interactions, and the term hypergraph for the
higher-order data.

The advantage of using hypergraphs

The goal of using the two baselines is to assess the ad-
vantage (if any) in treating a dataset with higher-order
interactions as a hypergraph. Indeed, in practice higher-
order data are often reduced to their projected graph,
an operation which not only generates a potentially mis-
leading loss of information, but which is also computa-
tionally expensive. Hence, before evaluating the perfor-
mance of Hypergraph-MT on various datasets, we turn
to the following fundamental question: given a dataset
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Fig. 1: The advantage of hypergraph representation: an illustrative example. The left plot shows a
subset of the High school dataset, with nodes belonging to the classes 2BIO1 (light blue) and MP*2 (orange), and
ten external guests (green). Node size is proportional to the degree. The gray hyperedge simulates an event, and we
omit the other hyperedges for visualization clarity. The central plot displays the partition extracted by
Hypergraph-MT and on the right we find the partition extracted by Graph-MT. In the latter, the gray edges denote
the interactions in the graph (obtained by clique expansions) before the event, and the red edges are the interactions
added because of the simulated event. This example shows the advantage of using hypergraphs as this
representation is more resilient to the addition of a noisy hyperedge and is more robust in detecting communities.

of high-order interactions, does a hypergraph represen-
tation bring any advantage compared to a simpler graph
representation? If the answer is positive, then we should
analyze the data with an algorithm that handles hyper-
graphs. If not, a simpler network algorithm should be
enough.

To this end, we analyze four datasets describing hu-
man close-proximity contact interactions obtained from
wearable sensor data at a high school (High school), a
primary school (Primary school), a workplace (Work-
place) and a hospital (Hospital). For the analysis, we
run the model on the three different structures (hyper-
graph, clique expansions, and pairwise edges) described
above. For each dataset, we compare the inferred par-
titions with the node metadata that describe either the
classes, the departments, or the roles the nodes belong
to. We measure closeness to the metadata with the F1-
score, a measure for hard-membership classification. It
ranges between 0 and 1, where 1 indicates perfect match-
ing between inferred and given partitions. Table 2 shows
the performance with the different structures, and both
hypergraphs and graphs perform similarly. Notice that
the average size of hyperedges in these datasets is around
2.2; thus interactions are mainly pairwise to start with.
Moreover, interactions with de > 2 include people who
already interact pairwise (see column % d > 2 ∈ G in Ta-
ble 1). Hence, a clique expansion of these is not expected
to provide much distinct information from that already
present in the pairwise subset of the dataset. Overall,
these results suggest that hypergraphs do not bring any
additional advantage for these types of datasets, and run-
ning a network algorithm would be enough.

To understand how this assessment may change, we

Hypergraph-MT Graph-MT Pairs-MT

High school 0.669 0.666 0.679

Primary school 0.659 0.645 0.643

Workplace 0.829 0.820 0.830

Hospital 0.435 0.478 0.496

Table. 2: Comparison of community detection
algorithms in human close-proximity contact
interactions datasets. For each dataset, we show the
F1-score obtained by comparing a node metadata
against the inferred partitions from the hypergraphs
(Hypergraph-MT), the graphs obtained by clique
expansions (Graph-MT), and the graphs given only by
the registered pairwise interactions (Pairs-MT).

present a toy example built from the High school dataset.
We select the subset of nodes belonging to two classes
(2BIO1 and MP*2 in our example), and we manipulate
it by artificially adding a large hyperedge. It simulates an
event where ten external people (guests) and a random
subset of ten existing nodes are participating. This is rep-
resented by the gray hyperedge of dimension 20 in Fig. 1
(left). Here, the green nodes are the external guests,
while the blue and orange nodes are the random-selected
students from the two classes, respectively. While we
only add one hyperedge, its size significantly differs from
that of all the other existing hyperedges. In particular,
a clique expansion resulting from this additional hyper-
edge brings in

(
20
2

)
new edges of size 2 (red in the figure).

Hence, we expect this additional information to impact
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the structure of Graph-MT much more than the hyper-
graph. Figure 1 shows that Hypergraph-MT is not biased
by the presence of this individual large hyperedge, and it
well recovers the external guests by assigning zero mem-
berships to them for both classes. Conversely, Graph-MT

assigns the guests to the blue class. With this toy exam-
ple, we show a possible scenario where hypergraphs have
an advantage, as this representation is more resilient to
the addition of a noisy hyperedge and is more robust in
detecting communities.

Hyperedge prediction: Analysis of a Gene-Disease
dataset

We now turn our attention to the analysis of a higher-
order Gene-Disease dataset, where nodes are genes, and
a hyperedge connects genes that are associated with a
disease. Here, we focus on the ability of our model to
predict missing hyperedges. We measure prediction per-
formance using a cross-validation protocol where hyper-
edges are divided into train and test sets. The train set
is used for parameter estimation, while performance is
evaluated on the test set. We compute the area under
the receiver-operator curve (AUC), and use the proba-
bility assigned by our model of a hyperedge to exist as
input scores for this metric. For Graph-MT, the probabil-
ity of a hyperedge to exist is computed as the product of
the probabilities that each single edge exists. For details,
see Section B. When evaluating Pairs-MT, we measure
the AUC on the subset of test hyperedges of size 2. To
perform a balanced comparison in this case, we also mea-
sure the AUC for both Hypergraph-MT and Graph-MT on
this set (pairs), while still training on the whole train set.
This provides information on the utility of large hyper-
edges to predict pairwise interactions.

We vary the maximum hyperedge size D to show how
each method responds to the incorporation of progres-
sively larger edges in terms of prediction tasks. Interest-
ingly, we observe a strong shift in performance around
D = 15, 16, where Hypergraph-MT significantly outper-
forms Graph-MT and Pairs-MT. This highlights that hy-
peredges with larger size carry useful information that
cannot be fully captured via clique expansions. This is
true regardless of the type of missing edges being pre-
dicted (hyperedges or pairs-only). In addition, predic-
tive performance is improved homogeneously across hy-
peredge sizes in the held-out set. Namely, we are not
improving just in predicting the pairs-only, as shown by
Hypergraph-MT (pairs), but also those of bigger sizes,
see Section D. This is where Graph-MT fails because the
additional information introduced by the clique expan-
sions produces a much denser graph than the input data
that may not be correlated with the true existing hyper-
edges, thus blurring the observations given in the input.
These results not only highlight the ability of our model
to predict missing data, but also how the knowledge of
large hyperedges helps the prediction of hyperedges of

smaller sizes.

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
D
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Hypergraph-MT
Hypergraph-MT (pairs)

Graph-MT
Graph-MT (pairs)

Pairs-MT

Fig. 2: Critical size for hyperedge prediction in
a Gene-Disease dataset. We measure the AUC by
varying the maximum hyperedge size D. The results
are averages and standard deviations over 5-fold
cross-validation test sets, and the baseline for AUC is
the random value 0.5. We run the model on the
hypergraphs (Hypergraph-MT), the graphs obtained by
clique expansions (Graph-MT), and the graphs given
only by the registered pairwise interactions (Pairs-MT).
To perform a balanced comparison against Pairs-MT, for
Hypergraph-MT and Graph-MT we additionally measure
the AUC on the subset of test hyperedges of size 2
(pairs), while still training on the whole train set. The
plot shows the existence of a critical hyperedge size
beyond which the higher-order algorithm significantly
outperforms alternative methods.

Overlapping communities and interpretability:
Analysis of a Justice dataset

Together with hyperedge prediction, Hypergraph-MT

allows to extract relevant information also on the
mesoscale organization of real-world hypergraphs. As
a case study, we analyze a dataset recording all the
votes expressed by the Justices of the Supreme Court in
the U.S. from 1946 to 2019 case by case. Justices are
nodes, and hyperedges connect Justices that expressed
the same vote in a given case. The structure of this
hypergraph is different from the others analyzed above:
it has fewer nodes (N = 38) but it is denser (E = 2826),
on average a Justice votes 367 times. Similarly, the
graph obtained with clique expansion has substantially
fewer edges (EG = 264) but with higher weights than
the hypergraph. See Table 1 for details. Examining
the communities inferred in these two markedly distinct
structures can provide direct insights into the particular
aspects captured by a hypergraph formulation. To
this end, we compare the inferred partitions with the
political parties of the Justices, i.e., Democrat or Re-
publican, information provided as node metadata. We
use the cosine similarity (CS), a metric that measures
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A B

C

Fig. 3: Inference of overlapping communities in a co-voting higher-order dataset of the U.S. Justices.
(A) Point-by-point comparison between the cosine similarities (CS) obtained by Hypergraph-MT and Graph-MT. For
each Justice (marker in the plot), we compute the CS between the partitions inferred by the methods and the
political party of the Justices, i.e., Democrat (blue) and Republican (red). (B) Vote majority proportion of the
hyperedges of each Justice. Every hyperedge is colored based on the majority political party of the Justices involved
in it, i.e., either Democratic, Republican, or equally distributed (gray). Then, for every Justice, we extract the
percentage of times that they participate in hyperedges of a given majority. (C) Data partition according to the
political party (left), and the mixed-membership communities inferred by Hypergraph-MT (center) and
Graph-MT(right). Node size is proportional to the degree, node labels are Justice IDs, and the interactions are the
edges of the projected graph.

the distance between vectors, and thus it is better
suited to capture mixed-membership communities. The
CS varies between 0 and 1, where 1 means that the
inferred partition matches perfectly the one shown by
political affiliation. For each node, we compute the CS
between its political party and the partitions inferred
by Hypergraph-MT and Graph-MT. Fig. 3A shows the
point-by-point comparison between the resulted cosine
similarities of the two methods. Here, each marker is a
Justice and colors represent their political parties. Points
above (below) the diagonal represent Justices for which
the communities inferred by Hypergraph-MT (Graph-MT)
align better with the political party. In several cases
the two models infer memberships that align similarly
with political affiliation: upper-right corner, where both
models are aligned well, and lower-left corner, where
they are both not aligned well. The interesting behavior
is shown in the bottom-right area highlighted in gray,
containing three Justices whose political affiliations are
more closely associated with the communities inferred by
Graph-MT than those of Hypergraph-MT. To investigate

these cases, we inspect the information carried by the
hyperedges. Specifically, for each hyperedge we measure
the majority political party based on the affiliation of
the Justices involved in it. For instance, a hyperedge
of size 5 made of 4 democrats and 1 republican has a
Democratic majority. We also account for ties, when
equal numbers of Justices are in both parties. Then,
for each Justice, we extract the percentage of times
that they participate in hyperedges of a given majority.
This measure indicates the tendency of Justices to vote
more often aligned with democrats or republicans, an
information summarized in Fig. 3B. We observe Justices
that consistently vote with their own party majority
(e.g., Justice 3 votes mainly with other democrats,
Justice 28 mainly with other republicans), but also cases
in which the political party of the Justice is not aligned
with the voting behavior expressed by their hyperedges.
For example, node 30 (Justice Ruth Bader Ginsburg)
is associated with the Democratic Party, but most of
her votes align with those of republican Justices. This
behavior is captured by Hypergraph-MT, which assigns
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Fig. 4: Hyperedge prediction performance and computational complexity in higher-order datasets.
(A) The performance of hyperedge prediction is measured with the AUC, whose baseline is the random value 0.5.
The results are averages and standard deviations over 5-fold cross-validation test sets. For each dataset, we run the
model on the hypergraphs (Hypergraph-MT), the graphs obtained by clique expansions (Graph-MT), and the graphs
given only by the registered pairwise interactions (Pairs-MT). To perform a balanced comparison against Pairs-MT,
for Hypergraph-MT and Graph-MT we additionally measure the AUC on the subset of test hyperedges of degree 2
(pairs), while still training on the whole train set. (B) Computational complexity of Hypergraph-MT, Graph-MT, and
Pairs-MT for the different higher-order datasets. We show the running time for one realization.

her a membership more peaked in the community made
of republicans and only partially to the one of democrats,
as shown in Fig. 3C. Instead, Graph-MT assigns her
mostly to the community of democrats. This mismatch
between hypergraph information and political affiliation
explains the lower value of cosine similarity in Fig. 3A.
Similar conclusions can be drawn for node 31 and 15.
More generally, the overlapping memberships inferred by
Hypergraph-MT match more closely the voting behavior
of Justices than those inferred by Graph-MT, as shown
in the pie markers in Fig. 3C.

In addition to community structure, Hypergraph-MT

outperforms Graph-MT also in the hyperedge predic-
tion task. Fig. 4A shows how Hypergraph-MT achieves
higher AUC than Graph-MT, in both predicting pair-
wise and higher-order interactions. This further corrob-
orates the hypothesis that information is lost when de-
coupling higher-order interactions via clique expansion.
This example illustrates why it is critical to consider hy-
pergraphs when hyperedges contain information that can
be lost by clique expansion. It also shows the advantage
of considering overlapping communities when nodes’ be-
haviors are nuanced and no clear affiliation to one group
is expected. As Supreme Court cases span a wide range
of topics, we may expect Justices to exhibit a diversity
of preferences (and thus voting behaviors) that cannot
be fully captured by a binary political affiliation. Hence,
models that consider overlapping communities can pro-
vide a variety of patterns that better represents this di-

versity. Finally, this example also confirms that meta-
data should be carefully used as “ground-truth” commu-
nities, thus encouraging a careful exploration of the rela-
tionship between node metadata, information contained
in the hyperedges and community structure (49).

The computational efficiency of Hypergraph-MT

Beyond accuracy, algorithmic efficiency is necessary for
a widespread applicability of statistical inference models
to large-scale datasets. Hence, we now assess the per-
formance of our model on a variety of systems from dif-
ferent domains, focusing on the analysis of the compu-
tational efficiency of Hypergraph-MT as compared to al-
ternative approaches. The higher-order datasets include
co-sponsorship and committee memberships data of the
U.S. Congress, co-purchasing behavior of customers on
Walmart, and clicking activity of users on Trivago (Ta-
ble 1). Hypergraph-MT and Graph-MT perform similarly
in terms of predicting missing hyperedges on most of
these datasets, as shown in Figure 4A. This suggests that
in such cases, the information learned from the clique ex-
pansion is similar to that contained in a hypergraph rep-
resentation. While one may be tempted to conclude that
using a dyadic method should be favored in these cases,
we argue that predictive performance may not be the only
metric to use to make this decision. Indeed, time com-
plexity also plays a role here, as many of these datasets
have large hyperedges. While we have extensively dis-
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cussed the efficiency of Hypergraph-MT, one should also
consider the cost of running dyadic methods on clique ex-
pansion of large data. In fact, this depends on the num-
ber of pairs generated in the expansion, a quantity related
to both the amount and size of hyperedges. As a result,
the size of a graph obtained by clique expansion can be-
come arbitrarily large. For instance, the House bills data
results in almost 4×105 edges, as opposed to the 4×104

hyperedges given by the hypergraph representation. This
difference of an order of magnitude has a significant im-
pact in terms of computational complexity. In fact, we
observe a difference of an order of magnitude also in the
running time of the algorithms, as shown in Figure 4B,
where we plot the time to run the three methods on each
dataset. While for datasets with small hyperedges (e.g.,
the close-proximity data discussed above) running time
is similar for Hypergraph-MT and Graph-MT, we observe
significant differences for datasets with larger maximum
size D, with Hypergraph-MT being much faster to run.
Hypergraph-MT may therefore be the algorithm of choice
for large system sizes.

DISCUSSION

Here we have introduced Hypergraph-MT, a mixed-
membership probabilistic generative model for hy-
pergraphs, which proposes a first way to extract the
overlapping community organization of nodes in net-
worked systems with higher-order interactions. In
addition to detecting communities, our model provides a
principled tool to predict missing hyperedges, thus serv-
ing as a quantitative evaluation framework for assessing
goodness of fit. This feature is particularly useful in
the absence of metadata when evaluating community
detection schemes. In practice, our model considers an
assortative affinity matrix, which makes its algorithmic
implementation highly scalable. The computational
complexity is also significantly reduced by an efficient
routine to compute expensive quantities at low cost
in each update, a problem not present in the case of
graphs. We have applied our model to a wide variety of
social and biological hypergraphs, discussing accuracy
in the hyperedge and community structure inference
tasks. Moreover, we have showed that Hypergraph-MT

outperforms clique expansion methods with respect to
running time, making it a suitable solution also for
higher-order datasets with large hyperedges.

Our method has a substantial advantage in systems
where hyperedges contain important information that
can be lost by considering non-higher-order methods
on projected dyadic graphs. For instance, it allows
quantifying how maximum hyperedge size impacts
performance and unveils the presence of critical sizes
beyond which higher-order algorithms may significantly
outperform dyadic methods, as shown in a Gene-Disease
dataset. Hypergraph-MT also has the benefits of being

more resilient to the addition of large noisy hyperedges
and of being more robust in detecting communities that
are more closely aligned with the information carried by
hyperedges, as shown in the analysis of the U.S. Justices.

There are natural methodological extensions to fur-
ther expand the range of applications covered by our
model. Here we have considered an assortative affin-
ity matrix, but alternative formulations could be consid-
ered to target different types of structures. The challenge
would be to increase flexibility while keeping the dimen-
sionality of the problem under control. Moreover, our
model takes in input hyperedges of one type, but there
could be multiple types of ways to connect a subset of
nodes. Expanding our approach to these cases would be
analogous to extend single-layer networks to multilayer
ones. This may be done by suitably defining different
types of affinity matrices for each type of high-order in-
teraction, as in (41). Similarly, hypergraphs may carry
additional information beyond that contained in hyper-
edges. This calls for further developments to rigorously
incorporate information such as node attributes into the
model formulation (50, 51). While here we have focused
on analyzing real-world data, our generative model can
also be used to sample synthetic data with hypergraph
structure. In particular, our model could prove useful
for practitioners interested in utilizing synthetic bench-
marks of hypergraphs, allowing a better characterization
of higher-order topological properties, including simpli-
cial closure (32) and higher-order motifs (35). Taken
together, Hypergraph-MT provides a fast and scalable
tool for inferring the structure of large-scale hypergraphs,
contributing to a better understanding of the networked
organization of real-world higher-order systems.
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F. Ronzano, E. Centeno, F. Sanz, L. I. Furlong, The
disgenet knowledge platform for disease genomics: 2019
update. Nucleic acids research 48, D845–D855 (2020).

[58] J. H. Fowler, Connecting the congress: A study of
cosponsorship networks. Political Analysis 14, 456–487
(2006).

[59] J. H. Fowler, Legislative cosponsorship networks in the
us house and senate. Social networks 28, 454–465 (2006).

[60] C. Stewart III, J. Woon, Congressional committee as-
signments, 103rd to 114th congresses, 1993–2017: House,
Tech. rep., MIT mimeo (2008).

[61] I. Amburg, N. Veldt, A. Benson, Clustering in Graphs
and Hypergraphs with Categorical Edge Labels (Associa-
tion for Computing Machinery, 2020), pp. 706–717.

Acknowledgements: The authors thank the Interna-
tional Max Planck Research School for Intelligent Sys-
tems (IMPRS-IS) for supporting M.C. Funding: M.C.
and C.D.B. were supported by the Cyber Valley Research

Fund. Author contributions: M.C. and C.D.B. de-
veloped the algorithm and performed the experiments.
M.C., F.B., and C.D.B. all conceived the research, ana-
lyzed the results and wrote the manuscript. Competing
interests: The authors declare that they have no com-
peting interests. Data and materials availability: All
data used in the paper are explained in the Supplemen-
tary Materials. An open-source algorithmic implementa-
tion of the model is publicly available and can be found
at https://github.com/mcontisc/Hypergraph-MT.

https://github.com/mcontisc/Hypergraph-MT


11

SUPPORTING INFORMATION (SI)

A. INFERENCE OF HYPERGRAPH-MT

Hypergraph-MT models the likelihood of the hypergraph A = {Ae}e∈E as:

P (A|θ) =
∏
e∈Ω

e−λe
λAe
e

Ae!
, (S7)

where λe =
∑
k wdek

∏
i∈e uik. The set of latent variables is defined by θ = (u,w), where u is a N ×K-dimensional

community membership matrix and w is a D×K-dimensional affinity matrix, where D = maxe∈E de is the maximum
hyperedge size in the dataset. Each entry wdk represents the density of hyperedges of size d in the community k.
Notice, we only consider the assortative regime, to reduce the dimensionality of the affinity tensor w. The product
runs over Ω = {e|e ⊆ V, de ≥ 2}, that is, the set of all potential hyperedges. In practice, we can reduce this space
by considering only the possible hyperedges of a certain size lower or equal than the maximum observed size D. For
instance, if the maximum size of interactions in a hypergraph is D = 4, then we should not expect to see hyperedges
of size 5, and we can define Ω = {e|e ⊆ V, 2 ≤ de ≤ D}.

With this formulation, Hypergraph-MT is a mixed-membership probabilistic generative model for hypergraphs.
The main intuition behind it is that a hyperedge is more likely to exist between nodes with the same community
membership. In fact, hyperedges in which even a single value uik = 0 appears, are assigned a null probability. The
goal is thus to infer the latent variables u and w given the observed hypergraph A.

We infer the parameters using a maximum likelihood approach. Specifically, we maximize the log-likelihood

L = −
∑
e∈Ω

∑
k

wdek
∏
i∈e

uik +
∑
e∈E

Ae log
∑
k

wdek
∏
i∈e

uik (S8)

with respect to θ = (u,w), where we neglect the factorial term which is independent of the parameters. Because the
summation in the logarithm renders the calculations difficult, we employ a variational approximation using Jensen’s
inequality, that gives

L(ρ, θ) = −
∑
e∈Ω

∑
k

wdek
∏
i∈e

uik +
∑
e∈E

Ae
∑
k

ρek log

(
wdek

∏
i∈e uik

ρek

)
. (S9)

For each e ∈ E , we consider a variational distribution ρek over the communities k: this is our estimate of the probability
that the hyperedge e exists due to the contribution of the community k. The equality holds when

ρek =
wdek

∏
i∈e uik∑

k wdek
∏
i∈e uik

. (S10)

Maximize Eq. (S8), is then equivalent to maximize Eq. (S9) with respect to both θ and ρ. We estimate the parameters
by using an expectation-maximization (EM) algorithm, where at each step one updates ρ using Eq. (S10) (E-step)
and then maximizes L(ρ, θ) regarding θ = (u,w) by setting partial derivatives to zero (M-step). This procedure is
repeated until the log-likelihood converges. The fixed point is a local maximum, but it is not guaranteed to be the
global maximum. Therefore, we perform ten runs of the algorithm with different random initialization for θ, taking
the fixed point with the largest value of the log-likelihood.

A.1. Expectation-Maximization updates

The derivative in uik is given by:

∂L
∂uik

= −
∑

e∈Ω|i∈e

wdek
∏

j∈e|j 6=i

ujk +
∑

e∈E|i∈e

Ae
ρek
uik

. (S11)
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Setting this to zero, we obtain the updates:

uik =

∑
e∈E|i∈eAe ρek∑

e∈Ω|i∈e wdek
∏
j∈e|j 6=i ujk

=

∑
e∈E Bie ρek∑

e∈Ω|i∈e wdek
∏
j∈e|j 6=i ujk

, (S12)

where Bie is equal to the weight of the hyperedge e to which the node i belongs (it is an entry of the hypergraph
incidence matrix). The numerator of Eq. (S12) can be computed efficiently, as we only need the non-zero entries of
the incidence matrix, which is typically sparse. Instead, computing the denominator can be prohibitive depending
on the value of D, the maximum hyperedge size. This is due to the summation over all possible hyperedges in Ω,
which requires extracting all possible combinations

(
N
d

)
, for d = 2, . . . , D. We propose a solution to this problem that

reduces the computational complexity to O(NDK). The key is to rewrite the summation over Ω such that we have

an initial value that can be updated at cost O(1) after one update of u
(t)
ik → u

(t+1)
ik . Defining the set of hyperedges of

fixed size d as Ωd = {e ∈ Ω, de = d} and Ω̄dik =
{
e ∈ Ωd|i /∈ e

}
, we can write more compactly:

uik =

∑
e∈E Bie ρek∑D

d=2 wdk
∑
e∈Ω̄d−1

ik

∏
j∈e ujk

. (S13)

The idea now is to observe that products like
∑
e∈Ω̄d−1

ik

∏
j∈e ujk can be written as a function of

∑
e∈Ωd−1

∏
j∈e ujk

and uik. The first term depends exclusively on d and k, not on a particular i. Hence, by isolating these terms from
the ones that depend on uik, we only need to update the second terms, without re-computing the first. For instance,
for d = 3, we can write

∑
e∈Ω̄2

ik

∏
j∈e ujk =

∑
j 6=m|j,m 6=i ujkumk =

∑
e∈Ω2

∏
j∈e ujk − uik

∑
j 6=i ujk.

To formalize this, we define a function ψ(S, k) that depends on a set of hyperedges S and community index k as

ψ(S, k) =
∑
e∈S

∏
j∈e

ujk . (S14)

With this definition, we have ∑
e∈Ωd

∏
j∈e

ujk = ψ(Ωd, k) = uik ψ(Ω̄d−1
ik , k) + ψ(Ω̄dik, k) , (S15)

valid for d = 1, . . . , D and we fix the term ψ(Ω̄0
ik, k) = 1. Notice that ψ(Ωd, k) depends solely on d and k, and it

can be used to compute ψ(Ω̄dik, k), needed in the denominator of Eq. (S13). The advantage of using this formulation

is given by the efficient update procedure. Indeed, when we update an entry u
(t)
ik → u

(t+1)
ik we can efficiently update

ψ(t)(Ωd, k) by simply:

ψ(t)(Ωd, k) =
(
u

(t)
ik − u

(t−1)
ik

)
ψ(t−1)(Ω̄d−1

ik , k) + ψ(t−1)(Ωd, k) , (S16)

and we can do this in parallel over k = 1, . . . ,K. These new values can then be used in the denominator of any other

update u
(t−1)
jk → u

(t)
jk as

ψ(t)(Ω̄djk, k) = ψ(t)(Ωd, k)− u(t−1)
jk ψ(t)(Ω̄d−1

jk , k) . (S17)

In practice, one only needs to initialize the values of ψ(0)(Ωd, k) at t = 0 and then keep iterating in this way. There
are D × K terms ψ(Ωd, k) to compute at each update, costing O(1) each. We have to repeat this N times (once
after the update of each ui = (ui1, . . . , uiK)) for a total complexity of N ×D ×K. We have a similar complexity for
updating the terms ψ(Ω̄dik, k). As for the initialization of ψ(0)(Ωd, k), at t = 0 we assume a fixed uik = uk for each
node and calculate Eq. (S15) analytically. Note that one can then randomly initialize the uik and continue iterating
using the updates above. We get

ψ(0)(Ωd, k) =
∑
e∈Ωd

∏
j∈e

uk =
∑
e∈Ωd

udk =

(
Nk
d

)
udk , (S18)

where Nk is the number of nodes that have uik > 0, i.e., the number of nodes initially in community k. With this
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formulation, the updates of the membership matrix become

uik =

∑
e∈E Bie ρek∑D

d=2 wdkψ(Ω̄d−1
ik , k)

. (S19)

We now compute the derivative of L(ρ, θ) in wdk:

∂L
∂wdk

= −
∑
e∈Ωd

∏
j∈e

ujk +
∑

e∈E|de=d

Ae
ρek
wdk

. (S20)

Setting this to zero, we get the updates:

wdk =

∑
e∈E|de=dAe ρek∑
e∈Ωd

∏
j∈e ujk

=

∑
e∈E|de=dAe ρek

ψ(Ωd, k)
, (S21)

which are computationally efficient and can be updated in parallel.

We describe the whole inference routine in Algorithm 1.

Algorithm 1 Hypergraph-MT: EM algorithm

Input: hypergraph A = {Ae}e∈E , number of communities K.

Output: membership matrix u = [uik]; affinity matrix w = [wdk].

Initialize w and uik = uk at random.
Compute

ψ(0)(Ωd, k) =

(
Nk
d

)
udk , (S22)

Repeat until convergence:

1. Calculate ρ (E-step) for k, e ∈ E :

ρ
(t)
ek =

w
(t−1)
dek

∏
i∈e u

(t−1)
ik∑

k w
(t−1)
dek

∏
i∈e u

(t−1)
ik

2. Update parameters θ (M-step):

i) for each pair (d, k) update affinity matrix:

w
(t)
dk =

∑
e∈E|de=dAe ρ

(t)
ek

ψ(t)(Ωd, k)
(S23)

ii) for each pair (i, k):

ii.i) for each pair (d, k) update

ψ(t)(Ω̄dik, k) = ψ(t)(Ωd, k)− u(t−1)
ik ψ(t)(Ω̄d−1

ik , k) (S24)

ii.ii) update membership

u
(t)
ik =

∑
e∈E Bie ρ

(t)
ek∑D

d=2 w
(t)
dk ψ

(t)(Ω̄d−1
ik , k)

(S25)

ii.iii) for each pair (d, k) update

ψ(t+1)(Ωd, k) =
(
u

(t)
ik − u

(t−1)
ik

)
ψ(t)(Ω̄d−1

ik , k) + ψ(t)(Ωd, k) (S26)
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A.2. Priors, regularization, and constraints

So far, we infer the values of θ by following a maximum likelihood approach, which is equivalent to assuming
uniform priors on the parameters. However, we can also posit non-uniform priors on the parameters and compute
maximum a posteriori estimations. For instance, we may be interested in enforcing sparsity. To this aim, we can
consider exponential distribution priors with parameters γu and γw for the parameters u and w, respectively. This
results in two added terms in the log-likelihood, giving:

L
′

= L − γu
∑
i,k

uik − γw
∑
d,k

wdk . (S27)

Note, this is equivalent to a L1-regularization on the values of u and w. Following the same computations as before,
we get the new updates differ only by a constant term added in the denominators, e.g.,

wdk =

∑
e∈E|de=dAe ρek

γw +
∑
e∈Ωd

∏
j∈e ujk

. (S28)

Similarly, we can arbitrarily add constraints on the parameters. For instance, we can impose the membership
vectors to be probability vectors, i.e.,

∑
k uik = 1∀i. Also in this case, it leads to a constant term added in the

denominator of the updates of uik. In our numerical experiments, we run the model with and without constraints,
and present the results of the model that performs the best.

B. HYPEREDGE PREDICTION AND CROSS-VALIDATION

We assess the performance of our model by measuring the goodness in predicting missing hyperedges. In these
experiments, we use a 5-fold cross-validation routine: we divide the dataset into five equal-size groups (folds), selected
uniformly at random, and give the models access to four groups (training data) to learn the parameters; this contains
80% of the hyperedges. One then predicts the hyperedges in the held-out group (test set). By varying which group
we use as the test set, we get five trials per realization. When we use the baseline Pairs-MT, the training and the test
sets are the subsets extracted from the initial ones, containing only the hyperedges with de = 2. Instead, when we
use the baseline Graph-MT, we train the model on the graph obtained from clique expansions of the hyperedges in
the training set.

As a performance metric, we measure the area under the receiver-operator characteristic curve (AUC) on the test
data, and the final results are averages over the five folds. The AUC is the probability that a random true positive is
ranked above a random true negative; thus the AUC is 1 for perfect prediction, and 0.5 for chance. Since the set of
all possible hyperedges is large, it is not possible to compute the AUC on the whole training and test sets; hence we
proceed with samples. In detail, we fix the number of comparisons we want to evaluate, here 103. We then sample 103

values from the non-zero entries (where exist a hyperedge) of the sets, and we save the inferred hyperedge probabilities
in a vector R1. We sample the same number of values from the zero entries (where do not exist a hyperedge), keeping
this set balanced with R1 in terms of hyperedge size distribution. We save the inferred hyperedge probabilities of this
set of entries in a vector R0. We then make element-wise comparisons and compute the AUC as

AUC =

∑
(R1 > R0) + 0.5

∑
(R1 == R0)

|R1|
,

where
∑

(R1 > R0) stands for the number of times R1 has a higher value than R0 in the element-wise comparisons;
and |R1| = |R0| is the length of the vector, which is equal to the number of comparisons we fix.

To predict the existence of a hyperedge, we use different approaches according to the structure under analysis. For
Hypergraph-MT, the probability of a hyperedge is given by Eq. (1) of the main text. For Graph-MT, instead, we
compute the probability of a hyperedge as the product of the probabilities of each edge of its clique expansion to
exist. That is, P (Ae) =

∏
(ij)∈e2 P (Aij > 0), where e2 is the 2-combination set of the hyperedge e. Notice, all the

single pairwise interactions have to exist, to have a probability of the hyperedge greater than zero. When evaluating
Pairs-MT, we measure the AUC only on the subset of the test set containing edges, i.e., hyperedges with de = 2. To
perform a balanced comparison in this case, we also measure the AUC for both Hypergraph-MT and Graph-MT on this
set (pairs), while still training on the whole train set. This provides information on the utility of large hyperedges to
predict pairwise interactions.
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C. EXPERIMENTS WITH EMPIRICAL DATA

In the manuscript, we analyze hypergraphs derived from empirical data from various domains, and we provide
a summary of study datasets in Table 1 of the main text. To perform the inference in these datasets, we need to
choose the number of communities K. In general, K can be selected using model selection criteria. For instance,
one could evaluate the model’s predictive performance–for example in the link prediction task–for varying numbers
of communities, and then choose the best performing K. Here, for simplicity, we fix the number of communities K
equal to the number of classes of a node metadata, aiming to compare the resulting communities with this additional
information.

We first analyze four datasets collected by the SocioPatterns collaboration (http://www.sociopatterns.org),
which describe human close-proximity contact interactions obtained from wearable sensor data. The High school
dataset describes the interactions between students of nine different classrooms (52). In the Primary school, nodes
are students and teachers and a hyperedge connects groups of people that were all jointly in proximity to one
another (53, 54). Also here, the number of communities reflects the classrooms to which each student belongs, and
it includes an additional class for the teachers. The Workplace dataset contains the contacts of individuals of five
different departments, measured in an office building in France (55). Lastly, the Hospital hypergraph collects the
interactions between patients, patients and health-care workers (HCWs) and among HCWs in a hospital ward in
France (56). The number of communities corresponds then to the number of roles in the ward.

We then analyze the Gene-Disease dataset, that describes the gene-disease associations provided by expert curated
resources (e.g., UNIPROT, CTI) (57). Nodes correspond to genes, and each hyperedge is the set of genes associated
with a disease. We keep only the genes with a non-nan value of the Disease Pleiotropy Index (DPI), a quantity that
considers if the diseases associated with the gene are similar among them and belong to the same disease class or
belong to different disease classes. We use this attribute to fix the number of communities because it may indicate
the different behaviors of the genes in the datasets. Moreover, we keep hyperedges with size 2 ≤ de ≤ 25.

The second case study in the manuscript presents the analysis of the Justice hypergraph constructed from the data
in http://scdb.wustl.edu/about.php. This dataset records all the votes expressed by the justices of the Supreme
Court in the U.S. from 1946 to 2019 case by case. Nodes correspond to justices, and each hyperedge is the set of
justices that expressed the same vote in a case. The number of communities corresponds to the number of political
parties, i.e., Democrat and Republican.

The following datasets have been downloaded from https://www.cs.cornell.edu/~arb/data/. We analyze hy-
pergraphs created from U.S. congressional bill co-sponsorship data, where nodes correspond to congresspersons and
hyperedges correspond to the sponsor and all cosponsors of a bill in either the House of Representatives (House bills)
or the Senate (Senate bills) (39, 58, 59). We also use two datasets from the U.S. Congress in the form of committee
memberships (39, 60). Each hyperedge is a committee in a meeting of Congress, and each node again corresponds to
a member of the House (House committees) or a senator (Senate committees). A node is contained in a hyperedge
if the corresponding legislator was a member of the committee during the specified meeting of Congress. In all these
congressional datasets, the node labels give the political parties of the members, thus all of them have K = 2. For
these datasets, we run the model with different values of D = 2, . . . , 25 and choose the best value among them.

In addition to the congressional datasets, we analyze the Walmart hypergraph (61). Here, each node is a product,
and a hyperedge connects a set of products that were co-purchased by a customer in a single shopping trip. We fix
the number of communities equal to the product category labels. Lastly, we analyze the Trivago dataset (39). Nodes
correspond to hotels listed at trivago.com, and each hyperedge corresponds to a set of hotels whose website was clicked
on by a user of Trivago within a browsing session. For each hotel, the node label gives the country in which it is
located, and we fix K based on this information. For Walmart and Trivago, we consider a subset of the hypergraph
to reduce the sparsity, as done in (39). The c-core of a hypergraph H is defined as the largest subhypergraph Hc such
that all nodes in Hc have size at least c. For Walmart, we use the 3-core hypergraph, and for Trivago, we work with
the 5-core hypergraph.

http://www.sociopatterns.org
http://scdb.wustl.edu/about.php
https://www.cs.cornell.edu/~arb/data/
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D. ANALYSIS OF THE GENE-DISEASE DATASET
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Fig. 5: Cumulative hyperedge predictions in a Gene-Disease dataset. We measure the AUC by varying
the maximum hyperedge size D, and we plot the means over 5-fold cross-validation test sets. For each D, we show
the cumulative performance for the different 2 ≤ d ≤ D. The plot shows how the model on the hypergraphs
(Hypergraph-MT) outperforms the one using the graphs obtained by clique expansions (Graph-MT) beyond the
shift around D = 15, 16. In particular, Hypergraph-MT improves the predictive performance homogeneously across
hyperedge sizes. Namely, it does not improve just in predicting the pairs-only, but also those of bigger sizes.
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