
Community Detection in Large Hypergraphs

Nicolò Ruggeri,1, 2, ∗ Martina Contisciani,1 Federico Battiston,3 Caterina De Bacco1, †

1Max Planck Institute for Intelligent Systems, Cyber Valley, 72076 Tübingen, Germany
2Department of Computer Science, ETH, 8004 Zürich, Switzerland

3Department of Network and Data Science, Central European University, 1100 Vienna, Austria

Hypergraphs, describing networks where interactions take place among any number of units, are
a natural tool to model many real-world social and biological systems. In this work we propose
a principled framework to model the organization of higher-order data. Our approach recovers
community structure with accuracy exceeding that of currently available state-of-the-art algorithms,
as tested in synthetic benchmarks with both hard and overlapping ground-truth partitions. Our
model is flexible and allows capturing both assortative and disassortative community structures.
Moreover, our method scales orders of magnitude faster than competing algorithms, making it
suitable for the analysis of very large hypergraphs, containing millions of nodes and interactions
among thousands of nodes. Our work constitutes a practical and general tool for hypergraph
analysis, broadening our understanding of the organization of real-world higher-order systems.

I. INTRODUCTION

Over the last decades, most relational data, from bi-
ological to social systems, has found a successful repre-
sentation in terms of networks, where nodes describe the
basic units of the system, and links their pairwise interac-
tions (1). Nevertheless, such a modeling approach cannot
properly encode the presence of group interactions, de-
scribing associations among three or more system units
at a time (2–5). Such higher-order interactions have been
observed in a wide variety of systems, including collab-
oration networks (6), cellular networks (7), drug recom-
bination (8), human (9) and animal (10) face-to-face in-
teractions, and structural and functional mapping of the
human brain (11–13). In addition, the higher-order orga-
nization of many interacting systems is associated with
the generation of new phenomena and collective behavior
across many different dynamical processes, such as dif-
fusion (14), synchronization (15–20), spreading (21–23)
and evolutionary games (24–26).

Networked systems with higher-order interactions are
better described by different mathematical frameworks
from networks, such as hypergraphs, where hyperedges
encode interactions among an arbitrary number of sys-
tem units (2, 27). In the last few years several tools have
been developed for higher-order network analysis. These
include higher-order centrality scores (28, 29), cluster-
ing (30) and motif analysis (31, 32), as well as higher-
order approaches to network backboning (33, 34), link
prediction (35), and methods to reconstruct non-dyadic
relationships from pairwise interaction records (36). A
variety of approaches have been suggested to detect
communities in hypergraphs, including nonparametric
methods with hypergraphons (37), tensor decompositions
(38), latent space distance models (39), latent class mod-
els (40), flow-based algorithms (41, 42), spectral cluster-

∗ nicolo.ruggeri@tuebingen.mpg.de
† caterina.debacco@tuebingen.mpg.de

ing (43–45) and spectral embeddings (46). A different
line of works focuses on deriving theoretical detectability
limits (47–49).
Recently, statistical inference frameworks have been

proposed to capture in a principled way the mesoscale
organization of hypergraphs (35, 50, 51). Despite their
success, current approaches suffer from a number of no-
table drawbacks. For instance, the method in (51) is
restricted to utilizing very small hypergraphs and hyper-
edges, due to its high computational complexity. Also
the approach in (50) suffers from a high computational
complexity in the general case, and needs to make strong
assumptions to scale to real-life datasets. Finally, the
model in (35) is constrained to work only with assorta-
tive community structures.
In this work we propose a framework to model the or-

ganization of higher-order systems. Our method allows
detecting communities in hypergraphs with accuracy ex-
ceeding that of state-of-the-art approaches, both in the
cases of hard and mixed community assignments, as we
show on synthetic benchmarks with known ground-truth
partitions. Furthermore, its flexibility allows capturing
general configurations that could not be previously stud-
ied, such as disassortative community interactions.
Finally, overcoming the computational thresholds of

previous methods, our model is extremely efficient, mak-
ing it suitable to study hypergraphs containing millions of
nodes and interactions among thousands of system units
not accessible to alternative tools. We illustrate the ad-
vantages of our approach through a variety of experi-
ments on synthetic and real data. Our results showcase
the wide applicability of the proposed method, contribut-
ing to broaden our understanding of the organization of
higher-order real-world systems.

II. GENERATIVE MODEL

A hypergraph consists of a set of nodes V = {1, . . . , N}
and a set of hyperedges E. Each hyperedge e is a subset
of V , representing a higher-order interaction between a

ar
X

iv
:2

30
1.

11
22

6v
2

 [
cs

.S
I]

 3
 J

ul
 2

02
3

mailto:nicolo.ruggeri@tuebingen.mpg.de
mailto:caterina.debacco@tuebingen.mpg.de

2

number |e| of nodes. We denote by D the maximum
possible hyperedge size, which can be arbitrarily imposed
up to a maximum value of D = N , and Ω the set of all
possible hyperedges among nodes in V . We represent the
hypergraph via an adjacency vector A ∈ NΩ, with entry
Ae being the weight of e ∈ Ω. We assume the weights Ae

to be non-negative and discrete. For real-world systems,
A is typically sparse. In fact, the number |E| of non-zero
entries is typically linear in N , and thus much smaller
than the dimension |Ω|.

We model hypergraphs probabilistically, assuming
an underlying arbitrary community structure with K
overlapping groups, similarly to a mixed-membership
stochastic block model. Each node i can potentially be-
long to multiple groups, as specified by a K-dimensional
membership vector ui with non-negative entries. We col-
lect all the membership assignments in a N × K ma-
trix u. The density of interactions within and between
communities is regulated by a symmetric non-negative
K ×K affinity matrix w. These two main parameters, u
and w, control the Poisson distributions of the hyperedge
weights:

p(Ae;u,w) = Pois

(
Ae;

λe

κe

)
, (1)

where

λe =
∑

i<j:i,j∈e

uT
i w uj

=
∑

i<j:i,j∈e

K∑
k,q=1

uik ujq wkq . (2)

Here, κe = κ|e| is a normalization factor that solely de-
pends on the hyperedge size |e|. We develop our theory
for a general form of κn. While in principle any choice
κn > 0 is possible, in our experiments we utilize the form

κn = n(n−1)
2

(
N−2
n−2

)
, for every hyperedge of size n (52).

Due to the fact that κ2 = 1, if the hypergraph con-
tains only pairwise interactions our model is similar to
existing mixed-membership block models for dyadic net-
works (53, 54). Intuitively, given two nodes i, j, the term(
N−2
n−2

)
normalizes for the number of possible choices of

the remaining n − 2 nodes in the hyperedge. The term
n(n− 1)/2 averages among the number of possible pair-
wise interactions among the n nodes in the hyperedge.
Note that previous generative models for hypergraphs
were limited to detect only assortative community inter-
actions (35, 50). By contrast, in our model each entry
wkq distinctly specifies the strength of the interactions
between each k, q community pair. Hence, for the first
time, our method allows encoding more general commu-
nity structures, without the need to impose a-priori as-
sumptions to ensure computational and theoretical fea-
sibility. In particular, the bilinear form in Eq. (2) allows
for a tractable and scalable inference, regardless of the
structure of w. Another relevant feature of the model

is that the size of the affinity matrix w does not vary
with maximum hyperedge size D nor with the number
of hyperedges, making it memory efficient also for hyper-
graphs with large interactions. We name our model Hy-
MMSBM, for Hypergraph Mixed-Membership Stochas-
tic Block Model, and provide an open-source implemen-
tation at github.com/nickruggeri/Hy-MMSBM. We have
also incorporated our algorithm inside the open-source
library Hypergraphx (55).

III. INFERENCE

A. Optimization procedure

In real-life scenarios, practitioners observe a list of hy-
peredges, encoded in the vector A, and aim to learn the
node memberships u and affinity matrix w that best fit
the data. To this end, we start by considering the like-
lihood of A given the parameters θ = (u,w). Using
Eqs. (1) and (2), this is given by

p(A |θ) =
∏
e∈Ω

Pois

(
Ae;

λe

κe

)
, (3)

where the hyperedge weights are assumed to be condi-
tionally independent given (u,w). Its logarithm is given
by

log p(A |θ) =
∑
e∈Ω

− 1

κe

∑
i<j∈e

uT
i w uj

+
∑
e∈E

Ae log
∑

i<j∈e

uT
i w uj , (4)

where we discarded constant terms not depending on the
parameters. The first summation over |Ω| terms appears
intractable due to the exploding size of the configura-
tion space. However, one important feature of our model
is that this high dimensionality can be treated analyti-
cally, as the likelihood conveniently simplifies. In fact,
the summand

∑
e∈Ω− 1

κe

∑
i<j∈e u

T
i w uj is simply tak-

ing the interaction term uT
i wuj as many times as it

appears in all the possible hyperedges, each weighted
by the factor 1/κe. This reasoning yields the count

C =
∑D

n=2
1
κn

(
N−2
n−2

)
and the following simplified log-

likelihood:

log p(A |θ) = −C
∑

i<j∈V

uT
i w uj

+
∑
e∈E

Ae log
∑

i<j∈e

uT
i w uj , (5)

obtaining a tractable sum of terms. To maximize Eq. (5)
with respect to u and w, we use a standard variational
approach via Jensen’s inequality logE [x] ≥ E [log x], to

http://github.com/nickruggeri/Hy-MMSBM

3

lower bound the second summand as:∑
e∈E

Ae log
∑

i<j∈e

uT
i w uj ≥ (6)

∑
e∈E

Ae

∑
i<j∈e

K∑
k,q=1

ρ
(e)
ijkq log

(
uik ujq wkq

ρ
(e)
ijkq

)
.

Here, the variational distribution is specified by the ρ
(e)
ijkq

values, which can be any configuration of strictly positive

probabilities such that
∑

i<j∈e

∑K
k,q=1 ρ

(e)
ijkq = 1. The

equality in Eq. (6) is achieved when

ρ
(e)
ijkq =

uikujqwkq∑
i<j∈e

∑K
k,q=1 uikujqwkq

=
uikujqwkq

λe
. (7)

Hence, maximizing log p(A |θ) is equivalent to maximiz-
ing

L(u,w, ρ) = −C
∑

i<j∈V

uT
i w uj

+
∑
e∈E

Ae

∑
i<j∈e

K∑
k,q=1

ρ
(e)
ijkq log

(
uik ujq wkq

ρ
(e)
ijkq

)

with respect to both (u,w) and ρ. This can be done
by alternating between updating ρ and (u,w), as in the
Expectation-Maximization (EM) algorithm.
The update for θ ∈ {u,w} is obtained by setting the
partial derivative ∂L(θ, ρ)/∂θ to 0, which yields the fol-
lowing expressions:

uik =

∑
e∈E:i∈e Aeρ

(e)
ik

C
∑

q wkq

∑
j ̸=i∈V ujq

, (8)

wkq =

∑
e∈E Aeρ

(e)
kq

C
∑

i<j∈V uikujq
. (9)

The terms ρ
(e)
ik , ρ

(e)
kq are defined as:

ρ
(e)
ik =

∑
j∈e:j ̸=i

∑
q

ρ
(e)
ijkq ,

ρ
(e)
kq =

∑
i<j∈e

ρ
(e)
ijkq ,

and obtained after updating ρ
(e)
ijkq according to Eq. (7).

These updates presented in this section are based on
maximum likelihood estimation, where we do not set
any prior for (u,w). However, we can get Maximum-
A-Posteriori estimates (MAP) with similar derivations
and complexity by arbitrarily setting priors distributions
for the parameters, as we show in Appendix Maximum-
a-Posteriori (MAP) estimation. We comment on how
to obtain efficient matrix operations that implement the
updates in Eq. (8) and Eq. (9) in Section Practical im-
plementation and efficiency.

B. Identifiability, interpretation and theoretical
implications

In the following, we make some observations on rele-
vant aspects regarding the identifiability, interpretation
and theoretical implications of the proposed generative
model. First of all, the log-likelihood in Eq. (5) is in-
variant under permutations of the groups and under the
rescaling u→ c u and w → w/c2, for any constant c > 0.
This observation may raise questions about identifiabil-
ity of the parameters. However, both permutation and
rescaling do not change the composition of the commu-
nities nor the relative magnitude of the entries of w, thus
the mesoscale structure is not impacted by them. Nev-
ertheless, one can easily make the model identifiable by
setting a prior probability on w and considering MAP
estimates, see Appendix Identifiability for details.

Second, for similar invariance reasons, the constant C
can be neglected and absorbed after convergence, by ei-
ther rescaling u′ =

√
C u or w′ = C w. While the forms of

the rescaling constants κe play no role during inference,
as they only enter the updates through the C term, they
do instead impact the generative process when sampling
hypergraphs from it (52). For instance, calculations sim-
ilar to those in Appendix Average degree, allow getting
a closed-form expression for the average weighted degree
when only considering interactions of size k. The result-
ing formula E[dwk] =

(
N−2
k−2

)
k

κk N

∑
i<j∈V uT

i w uj shows
that rescaling the constant κk translates into a rescal-
ing of the average degree. Similar considerations apply
to the expected number of hyperedges of a given size,
and show that the normalization constants κe play an
important role in determining the expected statistics of
the model, and hence of the samples it produces. Gener-
ally, the sampling procedure from the generative model
in Eq. (3), allows determining the degree sequence (i.e.
the degree array of the single nodes) as well as the size
sequence (i.e. the count of hyperedges for every speci-
fied size), which depend on the Poisson parameters and
hence on the κe normalizers. Alternatively the sampling
procedure from our generative model can be conditioned
to respect such sequences (52).

Third, it is possible to obtain the analytical expressions
of the expected degree of a node i, which evaluates to

E [dwi] =
∑

e∈Ω:i∈e

E[Ae]

= CuT
i w

∑
j∈V :j ̸=i

uj + C ′
∑

j<m∈V :j,m ̸=i

uT
j wum ,

where C ′ =
∑D

d=3
(N−3

d−3)
κd

is a constant similar to C, see
Appendix Average degree. This expression has a relevant
interpretation, as it reveals a fundamental difference be-
tween simple networks and higher-order systems. Since
in dyadic systems C ′ = 0, we can think of the rightmost
summand as a term contributing only to higher-order
interactions, while the leftmost one is a shift of the ex-

4

pected degree coming from binary interactions only. One
can also observe an analogy with networks of interactions
in physical systems. In this context, the leftmost sum-
mand can be seen as a mean-field acting on node i in a
cavity system where the node is hypothetically removed,
while the rightmost term acts as a background field gen-
erated by all interactions involving any pair of nodes that
does not include node i. This background term is pe-
culiar to higher-order systems, as remarked above. Its
presence has a relevant effect of building higher-order in-
teractions between nodes in different groups. This can be
illustrated with a simple example of a system with assor-
tative w and node i belonging to a different community
than all the other nodes. While the leftmost summand
yields expected degree zero in dyadic systems, the back-
ground field allows i to form on average non-zero edges.
Intuitively, this difference is due to the bilinear form in
Eq. (2), that allows observing hyperedges that are not
completely homogenous, where there could be a minor
fraction of nodes that are in different communities than
the majority. Notice that such a generation, allowing
for mixed hyperedges, is a desirable feature. On the one
hand, it is appropriate to model contexts where individ-
uals have multiple preferences and thus are expected to
belong to multiple groups. On the other hand, recent
work (56) proves the combinatorial unfeasibility of hy-
pergraphs where all nodes exhibit majority homophily–
implying rather uniform hyperedges contained in single
communities– and encourages the development of more
flexible generative models.

C. Practical implementation and efficiency

From an optimization perspective, the EM algorithm
starts by initializing u and w at random and then repeat-
edly alternating between the Eq. (8) and Eq. (9) updates
until convergence of L(u,w, ρ). This does not guarantee
to reach the global optimum, but only a local one. In
practice, one runs the algorithm several times, each time
from a different random initialization, and outputs the
parameters corresponding to the realization with high-
est log-likelihood L(u,w, ρ). We provide a pseudocode
description of the whole inference procedure in Algo-
rithm 1. For all our experiments, we perform MAP in-
ference on the affinity w, setting a factorized exponen-
tial prior with rate 1, and maximum likelihood inference
on the assignment u. This choice corresponds to the
half-Bayesian model presented in Appendices Maximum-
a-Posteriori (MAP) estimation and Identifiability. The
updates have linear computational cost, obtained by ex-
ploiting the sparsity of most real-world datasets with ef-
ficient matrix operations, as we show in Appendix Com-
putational considerations. Overall, the complexity scales
as O(N K + |E|), allowing to tackle inference on hyper-
graphs whose number of nodes and hyperedges was pre-
viously prohibitive, see Section Modeling of real data.
Another advantage of our inference procedure is that

it is stable and reliable for extremely large hyperedges.
Due to computational and numerical constraints, previ-
ous models were also limited to considering hyperedges
with maximal size D = 25 (35, 50). As we illustrate
in Section Modeling of real data with an Amazon and
a Gene-Disease dataset, large interactions (respectively
D = 9350 and D = 1074) should not be neglected as
they provide useful information and substantially boost
the quality of inference.

Algorithm 1: Hy-MMSBM EM inference

Input: Hypergraph A, training rounds r
Result: Inferred parameters (u,w)

1 BestLoglik = −∞
2 BestParams = None
> Train model r times and choose
> realization with best likelihood

3 for t = 1, . . . , r do
> Initialize at random

4 u,w ← init(u,w)
> convergence is attained for a max
number of EM steps, or below a
certain change in parameter values

5 while not converged do
6 u← update(u) Eq. (8)
7 w ← update(w) Eq. (9)

8 end
9 L = loglik(u,w) Eq. (5)

10 if L > BestLoglik then
11 BestLoglik ← L
12 BestParams ← (u,w)

13 end

14 end

IV. RECOVERY OF GROUND-TRUTH
COMMUNITIES

A standard way to assess the effectiveness of a commu-
nity detection algorithm is to check if the inferred node
memberships match those of a given ground truth. Such
ground truth is generally not available for real-world sys-
tems (57), whilst it can be imposed as a planted con-
figuration for synthetic data. For this reason, we con-
sider a recently developed sampling method to produce
structured synthetic hypergraphs with flexible structures
specified in input (52). For further details, see Appendix
Recovery of community assignments.
In Fig. 1, we generate hypergraphs with an underly-

ing diagonal affinity matrix w (assortative structure) and
show the recovery performance for the cases of hard (left)
and mixed-membership (right) community assignments.
The detailed description of the data generation process
is provided in Appendix Recovery of community assign-
ments. We compare our approach with Hypergraph-

5

2 4 6 8 10 12 14
D

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
C

os
in

e
S

im
ila

ri
ty

Hard-Membership Ground Truth

2 4 6 8 10 12 14
D

Mixed-Membership Ground Truth

Hy-MMSBM

Hypergraph-MT

Spectral Clustering

Hypergraph AON-MLL

Figure 1: Recovery of ground truth community assignments. We measure the cosine similarity between the
ground truth and the inferred assignments. We vary the maximum hyperedge size D in synthetic data, and study
the cases of hard (left) and mixed (right) ground-truth memberships. When information is scarce, represented by few
hyperedges of small maximum size D, our method is comparable to the most efficient approaches currently available.
However, as larger hyperedges are considered, our method outperforms competing algorithms, both on hard and
mixed-membership planted partitions.

MT (35), an inference algorithm designed to detect over-
lapping community assignments and assortative interac-
tions; Spectral Clustering (43), which recovers hard com-
munities via hypergraph cut optimization; and Hyper-
graph AON-MLL (50), which performs a modularity-like
optimization based on a Poisson generative model with
hard memberships. For our comparisons, we compute the
cosine similarity between the ground truth and the in-
ferred communities, which is appropriate to measure the
similarity for both hard and mixed-membership vectors.
A value of zero represents no similarity, while a value
of one is attained by completely overlapping vectors. In
both cases, we find that our model successfully recov-
ers the ground-truth communities as more information
is made available in terms of hyperedges of increasing
sizes. This is somehow expected because the generat-
ing process of these data reflects the one of our method,
and is a sanity check of our maximum likelihood ap-
proach. Spectral Clustering and Hypergraph-MT attain
comparable cosine similarity scores on hard-membership
data (left), while their performances differ when detect-
ing mixed memberships (right), with Hypergraph-MT
performing better. This is because Spectral Clustering
performs an approximate combinatorial search and can
only recover hard communities, while Hypergraph-MT
allows for overlapping communities via maximum like-
lihood inference. The low performance of Hypergraph
AON-MLL is explained by its generative assumptions. In
fact, AON-MLL assigns the same probability to all the
hyperedges containing nodes from more than one com-

munity. As most of the hyperedges in this synthetic data
are made of nodes from more than one community, the re-
covery of hypergraph modularity on such systems is close
to random. Altogether, such results highlight the effec-
tiveness of the inference procedure, making our model
suitable for networked systems with higher-order inter-
actions. Although relevant, the results in Fig. 1 are just
one possible comparison among algorithms with differ-
ent generative assumptions. Indeed, such assumptions
are expected to yield better or worse results depending
on the data, and in general, the no-free-lunch theorem
implies that no algorithm will consistently outperform
all others on all types of data. As a case for this ar-
gument, in Appendix Additional experiments on ground
truth recovery we present additional results on different
synthetic data.

V. DETECTABILITY OF COMMUNITY
CONFIGURATION

Previous inference algorithms rely on the strong as-
sumption of assortative community interactions, ham-
pering their ability to model more complex mesoscale
patterns observed in the real-world. By contrast, our
model allows detecting a variety of different regimes, as
it assumes a more flexible w.
Here, we investigate the detection–and detectability–of

different assortative and disassortative community struc-
tures in hypergraphs, generalizing previous work on pair-
wise systems (58). In particular, we generate hyper-

6

La − Ld Difference

0 1 2 3 4

Assortative Disassortative
cout
cin

cin

Less
Information

More
Information

A

0.2 0.4 0.6 0.8 1.0
cin

103

104

105

106

L d
D

is
as

so
rt

at
iv

e
M

od
el cout

cin

B

−6

−4

−2

0

2

4

6
×103

Figure 2: Detection of assortative and disassortative community interactions. We generate data where the
affinity matrices contain diagonal values cin and out-diagonal cout and measure the ability of our model to detect
different assortative and disassortative regimes. (A) Positive (negative) differences in log-likelihood values indicate
that the assortative (disassortative) model attains a better fit. An intermediate regime, highlighted in yellow, also
emerges. Here, the detectability is compromised due to not having enough structure (cout ≈ cin) or enough information
(low cin). (B) Log-likelihood of the disassortative model. In this case, the model attains better fit for data with marked
disassortative structure (darker red).

graphs with hard community assignments, and differ-
ent community interactions. We take affinity matrices
w with diagonal values cin and out-diagonal values cout,
and vary both cin and the ratio cout/cin. By fixing the
value of cout/cin, we expect higher detectability with in-
creasing cin, as this term regulates the expected degree
and consequently the information contained in the data.
On the contrary, for a fixed value of cin, we expect the
disassortative model to attain better recovery as the ratio
cout/cin increases, due to the stronger inter-community
interactions. Details on data generation are provided in
Appendix Detection of community structure.

We compare the log-likelihoods obtained by the model
when the affinity matrix w is initialized as diagonal or
full, which we refer to as assortative and disassortative,
respectively. Notice that the multiplicative updates in
Eq. (9) guarantee that, if w is initialized as diagonal, it
will remain as such during training. It is also possible
that a full matrix will converge to diagonal during infer-
ence. Nonetheless, the strong bias of a diagonal initial-
ization restricts the parameter space of the assortative
model, facilitating the convergence to better optima for
the detection of assortative structures.

Given the log-likelihood of the assortative (La) and
disassortative (Ld) models, we measure the difference
La − Ld while varying the values of cin and cout/cin.
Positive values denote stronger performance of the as-
sortative model, as its likelihood is higher, while nega-
tive values favor the disassortative one. We observe that
the assortative model attains higher likelihood for low
values of cout/cin, when within-community interactions

are stronger, as shown in Fig. 2A. Its performance de-
teriorates as we increase cout/cin with the disassortative
one taking over with higher likelihood values. Further-
more, we can notice an inflexion point at cout/cin = 1,
where the difference in likelihood between the models is
null. While one would expect the disassortative model
to perform better in such a scenario, we highlight that
this regime is a challenging and noisy one, as the affin-
ity matrix is the uniform matrix of ones. Hence recovery
is difficult and not guaranteed, regardless of the model.
We finally notice an increase of La − Ld with cin, which
regulates the strength of the signal and makes it easier
to separate the two regimes.
While we expect recovery to improve at more de-

tectable regimes, this may not be observed by only look-
ing at the La−Ld difference. For this reason, in Fig. 2B
we complement our analysis by plotting only the log-
likelihood Ld attained via the disassortative initializa-
tion. In this case we notice that the performance of the
disassortative model increases with both cout/cin and cin,
as the inter-community interactions get stronger and the
expected degree higher. Taken together, our algorithm
provides a principled way to extract arbitrary community
interactions from higher-order data with varying struc-
tural organizations.

VI. CORE-PERIPHERY STRUCTURE

Many real-world systems are characterized by a differ-
ent mesoscale organization known as core-periphery (CP)

7

0 200 400 600
Node Rank

10−4

10−3

10−2

10−1

100

C
or

e-
P

er
ip

h
er

y
P

ro
fil

e
|core| = 132

|core| =117

|core| =195.7± 7.1

|core| = 530.6± 23.0

A
Enron Email

Hy-MMSBM

Configuration Model

100 101 102 103 104

Core-Periphery Score

0

5

10

15

20

25

M
ea

n
H

yp
er

ed
ge

S
iz

e

B

Figure 3: Recovery of structural core-periphery information. (A) Core-Periphery profile (Eq. (10)) corre-
sponding to the core-scores computed with HyperNSM on the input Enron email (yellow), ten synthetic samples
generated with Hy-MMSBM (blue), and ten synthetic samples generated with a configuration model for hypergraphs
(magenta). We plot 600 nodes with the highest core-score in decreasing order, and report the averages and standard
deviations of the core dimension for the different datasets. Our method generates samples that closely resemble the
property of the input dataset, with an average core dimension close to 132 nodes. (B) Mean size of the hyperedges a
node belongs to against its CP score. We observe higher agreement between the data and the inference-based sample
generated with Hy-MMSBM. This is also highlighted by the Pearson correlation of the 132 core nodes that is equal
to 0.81±0.01 for Hy-MMSBM versus the value of 0.76±0.03 for the samples generated with the configuration model.

structure (59, 60). Networks characterized by such struc-
ture present a group of core of nodes connected among
themselves, and often with high degree (61, 62), and a
separate periphery of weakly connected nodes. Recently,
methods to study and detect the existence of such pat-
terns in hypergraphs have been proposed (63, 64). Con-
ceptually, Hy-MMSBM has not been developed with the
purpose of core-periphery detection. Nevertheless, we
can show its ability in capturing CP structures in hy-
pergraphs through the generation of synthetic data that
resemble the core structures of the input dataset.

To measure the recovery of CP structures, we use the
method developed by Tudisco et al. (64), HyperNSM,
that assigns to each node of a hypergraph a core-score
quantifying how close the node is to the core, where
higher values denote stronger participation. HyperNSM
achieved good performance on synthetic and real-world
data and its implementation is extremely efficient.

We analyze the Enron email dataset (65). Notably, the
dataset comes with metadata information identifying a
group of core nodes, employees of the organization who
send batch emails to the periphery, which in turn only
receive emails. This allows us to evaluate the ability of a
model to recover a core-periphery structure. In our study,
we utilize the dataset used in Tudisco et al. (64) with a
planted core set that arises directly from the data collec-
tion process, as discussed in Amburg et al. (63) (it is pre-
processed by keeping only hyperedges of size D ≤ 25).
The dataset has N = 4423 nodes and a core composed

by 132 nodes. We apply HyperNSM to quantify the CP
structure of the input Enron email dataset, as well as
of the samples generated with Hy-MMSBM. To generate
the samples, we first run our inference procedure on the
Enron email dataset, and then sample hypergraphs dis-
tributed according to the obtained u,w parameters. Fur-
ther details on how to generate the samples are provided
in Appendix Core-periphery experiments. For compari-
son, we also generate samples with a configuration model
for hypergraphs (66) and obtain their core-score vectors
with HyperNSM as well.
In order to evaluate the quality of the CP assignments

in the different samples, we use the CP profile, the metric
defined in (64) as:

γ(S) =
hyperedges with all nodes in S

hyperedges with at least one node in S
, S ⊆ V .

(10)

For any k ∈ {1, . . . , N} we calculate the value γ(Sk(x)),
where Sk(x) is the set of k nodes with smallest core-
score in x. Given its definition, γ(S) is small if S is
largely contained in the periphery of the hypergraph and
it should increase drastically as k crosses some threshold
value k0, which indicates that the nodes in V \ Sk0

(x)
form the core.

In Fig. 3A we show the CP profiles corresponding to
the core-scores computed with HyperNSM on the differ-
ent datasets, i.e. the input Enron email, the samples
generated with Hy-MMSBM, and the samples generated
with the configuration model for hypergraphs. We plot

8

600 nodes with the highest core-score in decreasing or-
der, and for all datasets we notice a sharp drop, which
highlights the existence of a CP structure. The main dif-
ference is given by the threshold k0 at which this drop
happens. This determines the dimension of the core.
Remember that the data has a core composed by 132
nodes, and when applying HyperNSM on the input data,
we obtain a core dimension equal to 117, validating the
good core-detection performance of this algorithm. The
samples generated with the configuration model present
a core with an average of 530.6 nodes, quite far from
what observed in the input dataset. On the other hand,
Hy-MMSBM generates samples that better resemble the
property of the Enron email dataset, with an average core
dimension of 195.7 nodes.

To understand the impact of non-pairwise interactions
on higher-order CP structure, we also study the connec-
tion between hyperedge size and CP score. In Fig. 3B,
we plot the CP score of a given node against the mean
size of the hyperedges it belongs to. While we can ob-
serve a strong relationship between these two quantities
at low CP scores, such regularity disappears in the cen-
ter of the plot, which contains core nodes and presents
a high scattering of hyperedge size values. This unex-
plained variance is justified by the rich information en-
coded in the CP score, which jointly depends on different
factors related to the topology of the hypergraph. Yet,
the scatter plots obtained on the Enron email dataset
and the samples generated with Hy-MMSBM have higher
similarity than the samples generated with the configu-
ration model. Quantitively, we measure the similarity
between the core-scores of the different datasets for the
132 core nodes with the Pearson correlation, a measure
ρ ∈ [−1, 1] of linear correlation between two sets of data.
The CP scores of the data have a Pearson correlation
equal to 0.81±0.01 with the samples generated with Hy-
MMSBM, and of 0.76± 0.03 with the samples generated
with the configuration model. Similar results are found
on the relation between CP score and another structural
property, namely the degree of a node, see Fig. S2 in
Appendix Additional results on the Enron email dataset.

VII. MODELING OF REAL DATA

In this section, we perform an extensive investigation of
higher-order real-world systems. As explained in Section
Inference and Appendix Computational considerations,
the linear-cost EM updates, together with a careful im-
plementation that exploits the sparsity of most datasets,
make our method suitable for the analysis of a variety
of hypergraphs which were previously inaccessible due to
computational constraints. In fact, our method proves
to be scalable with respect to both the number of sys-
tem units and the size of the interactions, improving sub-
stantially on competing algorithms currently available in
the literature. Moreover, our model is based on a prob-
abilistic formulation, allowing it to perform additional

operations and extract information which is not viable
via other approaches, such as spectral clustering. First
of all, we evaluate the quality of fit of various commu-
nity detection methods based on their hyperedge pre-
diction capabilities on a Gene Disease dataset, where
nodes are genes, and interactions contain genes that are
associated with a disease. To this end, we utilize the
Area-Under-the-Curve (AUC) measure, a link prediction
metric defined as follows: given a randomly selected ob-
served edge, and a randomly selected non-observed one,
the AUC ∈ [0, 1] computes the number of times that the
generative model assigns a higher probability to the ob-
served edge. Here, we split the datasets into train and
test subsets, where the train sets are used to estimate
the parameters, and we evaluate the prediction perfor-
mance in terms of AUC on the test sets, see Appendix
Experiments on real data for details. Scalability with re-
spect to hyperedge size is a crucial aspect of models for
higher-order data. However, due to computational and
numerical constraints, previous methods are limited to
considering interactions of moderate size only, possibly
causing a loss of information and a biased representa-
tion of the full system. In contrast, our model is able
to efficiently process all the information provided in the
dataset, reliably scaling to hyperedges of size of the or-
der of the thousands. In Fig. 4A we compare our method
with other probabilistic approaches with hyperedge pre-
diction capabilities. When only small interactions are
considered, our model outperforms the competitive algo-
rithms. At the computational limit of other approaches
D = 25, Hypergraph-MT and our model attain a simi-
lar score, signalling the importance of considering large
interactions. Beyond this computational threshold, our
method continues to exploit the information provided by
interactions among a growing number of units up to the
maximum size observed of D = 1074, which results in an
AUC score of 0.79.

We then extend our analysis to a variety of datasets
from different domains, as described in Fig. 4B. For each
dataset we show the inference running time as a func-
tion of the number of nodes N and the size of the largest
hyperedge D. The AUC scores, reported in Table I and
ranging from 0.74 to 0.98, show that the model gener-
ally yields a good fit and predicts the existence of hyper-
edges reliably. While these scores are on average aligned
with those of other existing algorithms (35), the running
time of our model is orders of magnitude lower. This al-
lows studying very large hypergraphs such as the Arxiv,
Trivago 2core and Amazon datasets, containing up to
millions of nodes and hyperedges. Overcoming the re-
sulting computational challenges, our method allows the
efficient modeling of a variety of previously unexplored
datasets, which, to the best of our knowledge, could not
be tackled by competing higher-order community detec-
tion algorithms.

Taken all together, these results show the effectiveness
of our model in tackling datasets of small and large di-
mensions, both in terms of quantitative performance and

9

101 102 103

D

0.50

0.55

0.60

0.65

0.70

0.75

0.80
A

U
C

D = 25
Computational threshold
for Hypergraph-MT
and Graph-MT

A

Hy-MMSBM

Hypergraph-MT

Graph-MT

102 103 104 105 106

N

100

101

102

103

104

105

T
im

e
(s

)

Justice

Hospital

Workspace

Primary School

Senate Committees

Senate Bills

Trivago
10core

High
School

Walmart
4core

Walmart
3core

House Committees

House Bills

Enron Email

Trivago 5core

Gene Disease
Walmart 2core

Trivago 2core

Arxiv

Amazon

B

D

101

102

103

104

Network Domain
Biological

Co-authorship

Email

Political

Shopping

Social

Figure 4: Modeling of real data: hyperedge prediction and running time. (A) Quality of hyperedge prediction
measured by the AUC score on a Gene-Disease dataset, where nodes are genes, and hyperedges contain genes that
are associated with a disease. For Hypergraph-MT and Graph-MT the plot shows a computational threshold at the
maximum hyperedge size D = 25. Hy-MMSBM attains the highest scores and is able to model the entire hypergraph,
up to D = 1074. (B) Running time of Hy-MMSBM for a variety of real-world datasets. The node represents the data
domain. Both N and D are in log-scale. The corresponding AUC scores are reported in Table I.

computational scalability, and make Hy-MMSBM a valid
tool for the study of complex higher-order systems.

DISCUSSION

In this work we have developed a probabilistic frame-
work to model hypergraphs. Our method allows per-
forming inference on very large hypergraphs, detecting
their community structure and reliably predicting the
existence of higher-order interactions of arbitrary size.
When compared to other available methods on synthetic
hypergraphs with known ground truth, for both hard and
mixed assignments our model attains the most efficient
recovery of the planted partitions. Moreover, compared
to previous proposals, Hy-MMSBM relies on less restric-
tive assumptions on the latent community structure in
the data, and is thus able to detect configurations, such
as disassortative community interactions, which could
not be previously identified. Furthermore, our method
is extremely fast. Its efficient numerical implementation
exploits optimized closed-form updates and dataset spar-
sity and has linear cost in the number of nodes and hy-
peredges. The resulting formulas are also numerically
stable, not resulting in under- or overflows during the
computations. Such numerical stability carries over to
extremely large interactions, a substantial improvement
over the computational threshold of previous methods,
allowing to explore higher-order datasets with millions
of nodes and interactions among thousands of units, that
could not be previously tackled.

There are several directions for future work. From a

theoretical perspective, our proposed likelihood function
is based on a bilinear form for capturing dependencies
within the hyperedges, a key ingredient for ensuring both
mixed-membership nodes and fast inference. A possi-
ble extension would be to consider alternative likelihood
definitions where the probability of the hyperedges is de-
termined by multilinear forms, which would in principle
allow capturing more complex interactions within the hy-
peredges. Similarly, here we have assumed the hyper-
edges to be independent conditioned on the latent vari-
ables. Relaxing this assumption may ameliorate the ex-
pressiveness of the model, allowing to capture topological
properties that involve more than two hyperedges, as al-
ready observed in the case of networks (67–69). From an
algorithmic perspective, there are different questions that
may allow further stabilizing and improving the inference
procedure. Among these, the propensity of different ini-
tial conditions to be trapped in local optima during EM
or MAP inference has not yet been investigated. Devis-
ing suitable initialization procedures or parameter priors
to favor different membership types, as done in other
works (70), offers a promising path in this direction. Fi-
nally, we have considered here a standard scenario where
the input data is a list of hyperedges, and these are pro-
vided all at once. Other approaches may be needed in
case of availability of extra information such as node at-
tributes (71, 72) or for dynamic data (73).

Altogether, our work provides an accurate, flexible and
scalable tool for the modeling of very large hypergraphs,
advancing our ability to tackle and study the organiza-
tion of real-world higher-order systems.

10

N |E| D K AUC

Justice 38 2,826 9 4 0.909± 0.008

Hospital 75 1,825 5 2 0.767± 0.013

Workspace 92 788 4 5 0.741± 0.015

Primary School 242 12,704 5 10 0.832± 0.002

Senate Committees 282 301 31 30 0.926± 0.023

Senate Bills 294 21,721 99 13 0.921± 0.002

Trivago 10core 303 3,162 14 11 0.960± 0.005

High School 327 7,818 5 17 0.879± 0.007

Walmart 4core 532 2,292 10 4 0.837± 0.013

Walmart 3core 1,025 3,553 11 4 0.825± 0.010

House Committees 1,290 335 81 25 0.939± 0.015

House Bills 1,494 54,933 399 19 0.946± 0.001

Enron Email 4,423 5,734 25 2 0.835± 0.009

Trivago 5core 6,687 33,963 26 30 0.962± 0.001

Gene Disease 9,262 3,128 1,074 2 0.828± 0.010

Walmart 2core 13,706 19,869 25 2 0.788± 0.004

Trivago 2core 59,536 140,698 52 100 0.863± 0.002

Arxiv 130,024 172,173 2,097 10 0.884± 0.001

Amazon 2,268,231 4,242,421 9,350 29 0.978± 0.002

TABLE I: AUC scores on real datasets. We report
the number of nodes N , number of hyperedges |E|, max-
imum hyperedge size D, number of communities K and
AUC scores attained by our method on 19 large-scale
real-world hypergraphs. The results are averages and
standard deviations over 10 random test sets, and the
value of K is chosen via cross-validation, see Appendix
Experiments on real data.

ACKNOWLEDGEMENTS

Funding N.R. acknowledges support from the Max
Planck ETH Center for Learning Systems. M.C. and
C.D.B. were supported by the Cyber Valley Research
Fund. M.C. acknowledges support from the Interna-
tional Max Planck Research School for Intelligent Sys-
tems (IMPRS-IS). F.B. acknowledges support from the
Air Force Office of Scientific Research under award num-
ber FA8655-22-1-7025.
Author contributions All authors conceived the
project. N.R. developed the code implementation and
performed the simulations and analysis. All the authors
contributed to the development of models and exper-
iments and to the writing and revision of the paper.
Competing interests The authors declare no compet-
ing interests.
Data and Materials availability All synthetic data
needed to evaluate the conclusions of the paper are ex-
plained in detail for reproduction. All real data are prop-
erly referenced and publicly available.

REFERENCES

[1] S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, D.-
U. Hwang, Complex networks: Structure and dynamics.
Physics Reports 424, 175–308 (2006).

[2] F. Battiston, G. Cencetti, I. Iacopini, V. Latora, M. Lu-
cas, A. Patania, J.-G. Young, G. Petri, Networks beyond
pairwise interactions: structure and dynamics. Physics
Reports 874, 1–92 (2020).

[3] L. Torres, A. S. Blevins, D. Bassett, T. Eliassi-Rad, The
why, how, and when of representations for complex sys-
tems. SIAM Review 63, 435-485 (2021).

[4] F. Battiston, E. Amico, A. Barrat, G. Bianconi, G. Fer-
raz de Arruda, B. Franceschiello, I. Iacopini, S. Kéfi,
V. Latora, Y. Moreno, et al., The physics of higher-
order interactions in complex systems. Nature Physics
17, 1093–1098 (2021).

[5] F. Battiston, G. Petri, Higher-Order Systems (Springer,
2022).

[6] A. Patania, G. Petri, F. Vaccarino, The shape of collab-
orations. EPJ Data Science 6, 1–16 (2017).

[7] S. Klamt, U.-U. Haus, F. Theis, Hypergraphs and cellu-
lar networks. PLOS Computational Biology 5, e1000385
(2009).

[8] A. Zimmer, I. Katzir, E. Dekel, A. E. Mayo, U. Alon, Pre-
diction of multidimensional drug dose responses based on
measurements of drug pairs. Proceedings of the National
Academy of Sciences 113, 10442–10447 (2016).

[9] G. Cencetti, F. Battiston, B. Lepri, M. Karsai, Temporal
properties of higher-order interactions in social networks.
Scientific Reports 11, 1–10 (2021).

[10] F. Musciotto, D. Papageorgiou, F. Battiston, D. R.
Farine, Beyond the dyad: uncovering higher-order struc-
ture within cohesive animal groups. bioRxiv (2022).

[11] G. Petri, P. Expert, F. Turkheimer, R. Carhart-Harris,
D. Nutt, P. J. Hellyer, F. Vaccarino, Homological scaf-
folds of brain functional networks. Journal of The Royal
Society Interface 11, 20140873 (2014).

[12] C. Giusti, R. Ghrist, D. S. Bassett, Two’s company, three
(or more) is a simplex. Journal of Computational Neu-
roscience 41, 1–14 (2016).

[13] A. Santoro, F. Battiston, G. Petri, E. Amico, Higher-
order organization of multivariate time series. Nature
Physics pp. 1–9 (2023).

[14] T. Carletti, F. Battiston, G. Cencetti, D. Fanelli, Ran-
dom walks on hypergraphs. Physical Review E 101,
022308 (2020).

[15] C. Bick, P. Ashwin, A. Rodrigues, Chaos in generically
coupled phase oscillator networks with nonpairwise in-
teractions. Chaos: An Interdisciplinary Journal of Non-
linear Science 26, 094814 (2016).

[16] P. S. Skardal, A. Arenas, Higher order interactions in
complex networks of phase oscillators promote abrupt
synchronization switching. Communications Physics 3,
1–6 (2020).

[17] A. P. Millán, J. J. Torres, G. Bianconi, Explosive higher-
order kuramoto dynamics on simplicial complexes. Phys-
ical Review Letters 124, 218301 (2020).

[18] M. Lucas, G. Cencetti, F. Battiston, Multiorder laplacian
for synchronization in higher-order networks. Physical
Review Research 2, 033410 (2020).

[19] L. V. Gambuzza, F. Di Patti, L. Gallo, S. Lepri, M. Ro-
mance, R. Criado, M. Frasca, V. Latora, S. Boccaletti,
Stability of synchronization in simplicial complexes. Na-
ture Communications 12, 1–13 (2021).

[20] Y. Zhang, M. Lucas, F. Battiston, Higher-order inter-
actions shape collective dynamics differently in hyper-
graphs and simplicial complexes. Nature Communica-
tions 14, 1605 (2023).

11

[21] I. Iacopini, G. Petri, A. Barrat, V. Latora, Simplicial
models of social contagion. Nature Communications 10,
1–9 (2019).

[22] S. Chowdhary, A. Kumar, G. Cencetti, I. Iacopini,
F. Battiston, Simplicial contagion in temporal higher-
order networks. Journal of Physics: Complexity 2,
035019 (2021).

[23] L. Neuhäuser, A. Mellor, R. Lambiotte, Multibody inter-
actions and nonlinear consensus dynamics on networked
systems. Physical Review E 101, 032310 (2020).

[24] U. Alvarez-Rodriguez, F. Battiston, G. F. de Arruda,
Y. Moreno, M. Perc, V. Latora, Evolutionary dynamics
of higher-order interactions in social networks. Nature
Human Behaviour 5, 586–595 (2021).

[25] A. Civilini, N. Anbarci, V. Latora, Evolutionary game
model of group choice dilemmas on hypergraphs. Physical
Review Letters 127, 268301 (2021).

[26] A. Civilini, O. Sadekar, F. Battiston, J. Gómez-
Gardeñes, V. Latora, Explosive cooperation in social
dilemmas on higher-order networks. arXiv preprint
arXiv:2303.11475 (2023).

[27] C. Berge, Graphs and hypergraphs (North-Holland Pub.
Co., 1973).

[28] A. R. Benson, Three hypergraph eigenvector centralities.
SIAM Journal on Mathematics of Data Science 1, 293–
312 (2019).

[29] F. Tudisco, D. J. Higham, Node and edge nonlinear
eigenvector centrality for hypergraphs. Communications
Physics 4, 1–10 (2021).

[30] A. R. Benson, R. Abebe, M. T. Schaub, A. Jadbabaie,
J. Kleinberg, Simplicial closure and higher-order link pre-
diction. Proceedings of the National Academy of Sciences
115, E11221–E11230 (2018).

[31] Q. F. Lotito, F. Musciotto, A. Montresor, F. Battiston,
Higher-order motif analysis in hypergraphs. Communi-
cations Physics 5, 79 (2022).

[32] Q. F. Lotito, F. Musciotto, F. Battiston, A. Montre-
sor, Exact and sampling methods for mining higher-
order motifs in large hypergraphs. arXiv preprint
arXiv:2209.10241 (2022).

[33] F. Musciotto, F. Battiston, R. N. Mantegna, Detect-
ing informative higher-order interactions in statistically
validated hypergraphs. Communications Physics 4, 1–9
(2021).

[34] F. Musciotto, F. Battiston, R. N. Mantegna, Identifying
maximal sets of significantly interacting nodes in higher-
order networks. arXiv preprint arXiv:2209.12712 (2022).

[35] M. Contisciani, F. Battiston, C. De Bacco, Inference of
hyperedges and overlapping communities in hypergraphs.
Nature Communications 13, 7229 (2022).

[36] J.-G. Young, G. Petri, T. P. Peixoto, Hypergraph recon-
struction from network data. Communications Physics
4, 1–11 (2021).

[37] K. Balasubramanian, D. Gitelman, H. Liu, Nonpara-
metric modeling of higher-order interactions via hyper-
graphons. J. Mach. Learn. Res. 22, 146–1 (2021).

[38] Z. T. Ke, F. Shi, D. Xia, Community detection for hy-
pergraph networks via regularized tensor power iteration.
arXiv preprint arXiv:1909.06503 (2019).

[39] K. Turnbull, S. Lunagomez Coria, C. Nemeth, E. Airoldi,
Latent space representations of hypergraphs. arxiv. org
(2019).

[40] T. L. J. Ng, T. B. Murphy, Model-based clustering for
random hypergraphs. Advances in Data Analysis and

Classification 16, 691–723 (2022).
[41] T. Carletti, D. Fanelli, R. Lambiotte, Random walks and

community detection in hypergraphs. Journal of Physics:
Complexity 2, 015011 (2021).

[42] A. Eriksson, D. Edler, A. Rojas, M. de Domenico,
M. Rosvall, How choosing random-walk model and net-
work representation matters for flow-based community
detection in hypergraphs. Communications Physics 4,
1–12 (2021).

[43] D. Zhou, J. Huang, B. Schölkopf, Learning with hy-
pergraphs: Clustering, classification, and embedding.
Advances in neural information processing systems 19
(2006).

[44] D. Ghoshdastidar, A. Dukkipati, International Confer-
ence on Machine Learning (PMLR, 2015), pp. 400–409.

[45] M. C. Angelini, F. Caltagirone, F. Krzakala, L. Zde-
borová, 2015 53rd Annual Allerton Conference on Com-
munication, Control, and Computing (Allerton) (IEEE,
2015), pp. 66–73.

[46] X. Gong, D. J. Higham, K. Zygalakis, Generative hyper-
graph models and spectral embedding. Scientific Reports
13, 1–13 (2023).

[47] D. Ghoshdastidar, A. Dukkipati, Consistency of spectral
partitioning of uniform hypergraphs under planted parti-
tion model. Advances in Neural Information Processing
Systems 27 (2014).

[48] C.-Y. Lin, I. E. Chien, I.-H. Wang, 2017 IEEE Interna-
tional Symposium on Information Theory (ISIT) (IEEE,
2017), pp. 2178–2182.

[49] K. Ahn, K. Lee, C. Suh, Community recovery in hyper-
graphs. IEEE Transactions on Information Theory 65,
6561–6579 (2019).

[50] P. S. Chodrow, N. Veldt, A. R. Benson, Generative hy-
pergraph clustering: From blockmodels to modularity.
Science Advances 7, eabh1303 (2021).

[51] L. Brusa, C. Matias, Model-based clustering in simple
hypergraphs through a stochastic blockmodel. arXiv
preprint arXiv:2210.05983 (2022).

[52] N. Ruggeri, F. Battiston, C. De Bacco, A principled, flex-
ible and efficient framework for hypergraph benchmark-
ing. arXiv preprint arXiv:2212.08593 (2022).

[53] E. M. Airoldi, D. Blei, S. Fienberg, E. Xing, Mixed mem-
bership stochastic blockmodels. Advances in neural in-
formation processing systems 21 (2008).

[54] C. De Bacco, E. A. Power, D. B. Larremore, C. Moore,
Community detection, link prediction, and layer interde-
pendence in multilayer networks. Physical Review E 95,
042317 (2017).

[55] Q. F. Lotito, M. Contisciani, C. De Bacco, L. Di Gae-
tano, L. Gallo, A. Montresor, F. Musciotto, N. Rug-
geri, F. Battiston, Hypergraphx: a library for higher-
order network analysis. Journal of Complex Networks
11, cnad019 (2023).

[56] N. Veldt, A. R. Benson, J. Kleinberg, Combinatorial
characterizations and impossibilities for higher-order ho-
mophily. Science Advances 9, eabq3200 (2023).

[57] L. Peel, D. B. Larremore, A. Clauset, The ground truth
about metadata and community detection in networks.
Science advances 3, e1602548 (2017).

[58] A. Decelle, F. Krzakala, C. Moore, L. Zdeborová, Asymp-
totic analysis of the stochastic block model for modular
networks and its algorithmic applications. Physical Re-
view E 84, 066106 (2011).

[59] S. P. Borgatti, M. G. Everett, Models of core/periphery

12

structures. Social networks 21, 375–395 (2000).
[60] P. Csermely, A. London, L.-Y. Wu, B. Uzzi, Structure

and dynamics of core/periphery networks. Journal of
Complex Networks 1, 93-123 (2013).

[61] V. Colizza, A. Flammini, M. A. Serrano, A. Vespignani,
Detecting rich-club ordering in complex networks. Nature
physics 2, 110–115 (2006).

[62] A. Ma, R. J. Mondragón, Rich-cores in networks. PloS
one 10, e0119678 (2015).

[63] I. Amburg, J. Kleinberg, A. R. Benson, Planted hitting
set recovery in hypergraphs. Journal of Physics: Com-
plexity 2, 035004 (2021).

[64] F. Tudisco, D. J. Higham, Core-Periphery Detection in
Hypergraphs. SIAM Journal on Mathematics of Data
Science 5, 1–21 (2023).

[65] B. Klimt, Y. Yang, European conference on machine
learning (Springer, 2004), pp. 217–226.

[66] P. S. Chodrow, Configuration models of random hyper-
graphs. Journal of Complex Networks 8, cnaa018 (2020).

[67] H. Safdari, M. Contisciani, C. De Bacco, Generative
model for reciprocity and community detection in net-
works. Physical Review Research 3, 023209 (2021).

[68] M. Contisciani, H. Safdari, C. De Bacco, Community de-
tection and reciprocity in networks by jointly modelling
pairs of edges. Journal of Complex Networks 10, cnac034
(2022).

[69] H. Safdari, M. Contisciani, C. De Bacco, Reciprocity,
community detection, and link prediction in dynamic
networks. Journal of Physics: Complexity 3, 015010
(2022).

[70] N. Nakis, A. Çelikkanat, M. Mørup, Complex Net-
works and Their Applications XI: Proceedings of The
Eleventh International Conference on Complex Networks
and Their Applications: COMPLEX NETWORKS
2022—Volume 1 (Springer, 2023), pp. 350–363.

[71] M. E. Newman, A. Clauset, Structure and inference in
annotated networks. Nature communications 7, 1–11
(2016).

[72] M. Contisciani, E. A. Power, C. De Bacco, Community
detection with node attributes in multilayer networks.
Scientific reports 10, 1–16 (2020).

[73] C. Matias, V. Miele, Statistical clustering of tempo-
ral networks through a dynamic stochastic block model.
Journal of the Royal Statistical Society: Series B (Sta-
tistical Methodology) 79, 1119–1141 (2017).

[74] E. L. Lehmann, G. Casella, Theory of point estimation
(Springer Science & Business Media, 2006).

[75] D. B. Larremore, A. Clauset, A. Z. Jacobs, Efficiently in-
ferring community structure in bipartite networks. Phys-
ical Review E 90, 012805 (2014).

[76] N. W. Landry, M. Lucas, I. Iacopini, G. Petri,
A. Schwarze, A. Patania, L. Torres, Xgi: A python pack-
age for higher-order interaction networks. Journal of
Open Source Software 8, 5162 (2023).

13

Appendix A: Maximum-a-Posteriori (MAP) estimation

In this section, we show how to generalize our probabilistic model to include exponential priors on the parameters,
and derive the correspondent EM updates for the MAP estimate. If we assume factorized exponential priors p(uik) ∼
Exp(ℓuik

) and p(wkq) ∼ Exp(ℓwkq
), where ℓuik

, ℓwkq
> 0 are the rate parameters, then, removing constant terms, we

obtain the following log-posterior:

log p(θ|A) =
∑
e∈Ω

− 1

κe

∑
i<j∈e

uT
i w uj

+
∑
e∈E

Ae log
∑

i<j∈e

uT
i w uj

+
∑
i∈V

K∑
k=1

log p(uik) +

k∑
k,q=1

p(wkq) .

Notice that this expression is given by the log-likelihood in Eq. (4) plus the prior distribution terms. We can proceed
deriving by repeating the calculations in Section Optimization procedure to optimize the log-posterior. The resulting
MAP updates are given by:

uik =

∑
e∈E:i∈e Aeρ

(e)
ik

C
∑

q wkq

∑
j ̸=i∈V ujq + ℓuik

(A1)

wkq =

∑
e∈E Aeρ

(e)
kq

C
∑

i<j∈V uikujq + ℓwkq

. (A2)

Similarly to those for the EM updates in Eqs. (8) and (9), these expressions can be computed efficiently by exploiting
the computations presented in Appendix Computational considerations, but have the advantage of making the model
identifiable, as we explain in Appendix Identifiability. In our experiments, we utilize default values ℓuik

≡ 0 and
ℓwkq

≡ 1, which correspond to a “half-bayesian” model where we fix the relative scale of the parameters via the prior
on w, and perform frequentist inference on u (as ℓuik

≡ 0 is not a valid rate for an exponential distribution, but yields
the maximum-likelihood EM updates).

Notice that, in the training procedure, the choice of prior distribution solely impacts the parameter updates. In
fact, Eqs. (A1) and (A2) are utilized in Lines 6 and 7 of Algorithm 1, while leaving the remaining steps unmodified.

Appendix B: Identifiability

In this section, we investigate under which conditions the generative model in Eqs. (1) and (2) is identifiable. As
commented in Section Identifiability, interpretation and theoretical implications, the likelihood is invariant to certain
simple transformations, such as rescaling or permutations, making the frequentist version of the model non-identifiable.
Here, we show how two different modifications, where we impose a prior on only one or both the parameter groups,
yield identifiability.

First of all, recall the following definition (74):

Definition. Let pθ(x) be a probabilistic model with parameters θ ∈ Θ. The model is called identifiable if, for all
θ1, θ2 ∈ Θ, the following holds

θ1 ̸= θ2 =⇒ pθ1 ̸= pθ2 .

Notice that two probability distributions p(x), q(x) on the same space are equal if they differ at most on sets of x values
of measure 0.

1. Identifiability for the fully Bayesian model

In the fully Bayesian model we posit both a prior on u and w. We prove its identifiability in the following.

14

Theorem 1. Take the likelihood in Eq. (4) and posit the following priors for the parameters

p(ui)

p(wkq) ∼ Exp(ℓ) ,

where p(ui) is any fixed probability distribution with support over (0,∞)K and ℓ a valid rate for an exponential
distribution. Then the model is identifiable.

Proof. Since the prior on u is fixed, the only parameter in the model is ℓ. Take two different values ℓ0 ̸= ℓ1. Since the
joint distribution p has support on the whole space of u,w and A values, the density is non-zero almost everywhere.
Thus, we can study the ratio:

p(A, w, u; ℓ0)

p(A, w, u; ℓ1)
=

p(A |u,w)p(u)p(w; ℓ0)
p(A |u,w)p(u)p(w; ℓ1)

=
p(w; ℓ0)

p(w; ℓ1)

=
∏

k≤q∈[K]

ℓ0 e− ℓ0 wkq

ℓ1 e− ℓ1 wkq

=

(
ℓ0

ℓ1

)K(K−1)
2

exp

(ℓ1− ℓ0)
∑

k≤q∈[K]

wkq

 .

Thus

p(A, w, u; ℓ0)

p(A, w, u; ℓ1)
= 1 ⇐⇒

∑
k≤q∈[K]

wkq =
K(K − 1) log

(
ℓ1

ℓ0

)
ℓ1− ℓ0

.

The right-hand-side defines a zero-measure subspace of w values. Thus, the two densities are equal only on a subspace
of measure zero and the model is identifiable.

2. Identifiability for the “half-Bayesian” model

While the fully Bayesian formulation of the model is identifiable, it also imposes additional constraints in the form
of the priors on both parameters. Here, we show that a “half-Bayesian” model, where the affinity values w are thought
of as random variables, and the u assignments are kept as frequentist parameters, is still identifiable. Intuitively, the
half-Bayesian model resolves the problem of scaling, which is determined via the prior on one set of parameters,
without imposing any additional constraints.

Theorem 2. Take the likelihood in Eq. (4) and posit an exponential prior

p(wkq) ∼ Exp(ℓ) .

If N ≥ 3, the model is identifiable.

Proof. Take two different parameter configurations (ℓ0, u0) ̸= (ℓ1, u1). Then there are three cases:

1. u0 = u1, ℓ0 ̸= ℓ1. The proof proceeds like that of Theorem 1.

2. u0 ̸= u1, ℓ0 = ℓ1. Since the exponential distribution has non-zero pdf everywhere, and the likelihood is non-zero

for any realization of A, we can study the ratio p(A,w;u0,ℓ0)
p(A,w;u1 ℓ1)

. Call the mean for the hyperedge e given the first

15

parameters λ0e :=
∑

i<j∈e u
0
i
T
wu0

j and similarly for λ1e. Then:

p(A, w;u0, ℓ0)

p(A, w;u1 ℓ1)
=

p(A |w;u0)p(w; ℓ0)

p(A |w;u1)p(w; ℓ1)

=
p(A |w;u0)

p(A |w;u1)

=
∏
e∈Ω

Pois(Ae; λ
0
e)

Pois(Ae; λ1e)

=
∏
e∈Ω

e−(λ0
e−λ1

e)

(
λ0e
λ1e

)Ae

.

By Lemma 1 there exist some values of w̃, ẽ such that λ0ẽ ̸= λ1ẽ (recall that λ0e, λ
1
e implicitly depend on w).

Assume w.l.o.g. that λ0ẽ > λ1ẽ.

Choose the following hypergraph realization Ã (implicitly depending on w̃ through the Poisson parameters λe):
Ãe = 0 if λ0e ≤ λ1e .

Ãe big enough such that

e−(λ0
e−λ1

e)
(

λ0
e

λ1
e

)Ae

> 1
if λ0e > λ1e .

(B1)

Notice that the second condition is attained for any integer Ãe >
λ0
e−λ1

e

log(λ0
e/λ

1
e)
. With this choice, for every hyperedge

e we have e−(λ0
e−λ1

e)
(

λ0
e

λ1
e

)Ãe

≥ 1.

Since ẽ satisfies the second condition of Eq. (B1), we obtain the following:

p(A, w;u0, ℓ0)

p(Ã, w;u1 ℓ1)
=
∏
e∈Ω

e−(λ0
e−λ1

e)

(
λ0e
λ1e

)Ae

≥ e−(λ0
ẽ−λ1

ẽ)

(
λ0ẽ
λ1ẽ

)Ãẽ

> 1 .

In summary, we found at least one value of Ã, w̃ such that p(Ã,w̃;u0,ℓ0)

p(Ã,w̃;u1 ℓ1)
> 1. This is not enough to prove that the

two probabilities are different: while the set {Ã} has non-zero measure (since A is discrete, every realization

has non-zero measure), the set {w̃} has zero measure. However observe that p(Ã,w;u0,ℓ0)

p(Ã,w;u1 ℓ1)
is a continuous function

in w. That means that there exists a neighborhood U of w̃ where

p(Ã, w;u0, ℓ0)

p(Ã, w;u1 ℓ1)
> 1 ∀w ∈ U .

The two probabilities differ on the set of non-zero measure {Ã} × U , and are thus different.

3. u0 ̸= u1, ℓ0 ̸= ℓ1. In this case

p(A, w;u0, ℓ0)

p(A, w;u1 ℓ1)
=

p(w; ℓ0)

p(w; ℓ1)

p(A |w;u0)

p(A |w;u1)
. (B2)

The proof is the same as in case 2., but the value of Ãe in the second condition of Eq. (B1) is imposed as

Ãe >
λ0
e−λ1

e+log

(
p(w;ℓ1)

p(w;ℓ0)

)
log(λ0

e/λ
1
e)

.

16

Lemma 1. Suppose N ≥ 3 and take two values u0 ̸= u1. Then there exist an affinity matrix w̃ and a hyperedge ẽ
such that λ0ẽ ̸= λ1ẽ.

Proof. Remember that u is a matrix of shape N ×K. Assume w.l.o.g. that u0
11 ̸= u1

11 (otherwise we can permute the
nodes and community labels such that this is true).
By absurd suppose that

λ0e = λ1e ∀w > 0,∀e ∈ Ω . (B3)

Notice that relationship in Eq. (B3) carries over to all w ≥ 0, not only w > 0. This can be proved as follows. Consider
w ≥ 0 that contains at least one zero value. Then w + ϵ > 0 for any ϵ > 0, and, due to the assumption in Eq. (B3),
for any e it is true that λ0e(w + ϵ) = λ1e(w + ϵ) (where the dependency of λe on the adjacency matrix has been made
explicit). Then:

lim
ϵ→0+

λ0e(w + ϵ) = lim
ϵ→0+

λ0e(w + ϵ)

=⇒ λ0e(w) = λ1e(w) ,

by continuity. In summary

λ0e = λ1e ∀w ≥ 0,∀e ∈ Ω . (B4)

Now consider w =

1/u0
11 . . . 0

...
. . .

...
0 . . . 0

. Relationship (B4) implies, for any 2-hyperedge {1, j}, j = 2, . . . , N , that u0
j1 =

u1
11

u0
11
u1
j1. Similarly, for any k ∈ [K], if we define ck :=

u1
1k

u0
1k
, then:

u0
jk = cku

1
jk .

or

u0
j = c⊙ u1

j , (B5)

where c is the vector of ck values and ⊙ is the element-wise (or Hadamard) product. Since there are at least three
nodes, take some nodes j,m > 1. Equations (B4) and (B5) imply, for any w ≥ 0 and edge e = {j,m}

(u0
j)

Tw(u0
m) = (u1

j)w
T (u1

m)

=⇒ (u1
j ⊙ c)Tw(u1

m ⊙ c) = (u1
j)

Tw(u1
m) .

By choosing w =

1 . . . 0
...

. . .
...

0 . . . 0

 we get

(u1
j1)c

2
1 = (u1

j1)
2 =⇒ c1 = 1 =⇒ u0

11 = u1
11 ,

which is a contradiction.

Appendix C: Computational considerations

Naive computations of the EM updates in Eqs. (8) and (9) incur a quadratic cost O(N2). Similarly, the computation
of the Poisson parameters in Eq. (2) could result in expensive operations for large hyperedges. In this section, we
show how to simplify the derivations for the Poisson parameters λe to reach a computational cost of O(|e|), as well
as how to make use of sparse data to obtain efficient updates with a linear computational complexity of O(N) and
O(|E|).
We utilize a computationally convenient representation of a hypergraph via the incidence matrix B ∈ {0, 1}N×|E|.

In every column, indexed by the hyperedges e, the incidence matrix contains ones for the nodes in the hyperedge,

17

otherwise zeros, and is typically sparse. For a given hyperedge e, we define the quantity se :=
∑

i∈e ui, as well as
s :=

∑
i∈V ui.

1. Computation of λe

The following reformulation moves from quadratic to linear computations in |e| for the Poisson parameters λe
defined in Eq. (2):

λe =
∑

i<j∈e

uT
i wuj (C1)

=
1

2
(
∑
i,j∈e

uT
i wuj −

∑
i∈e

uT
i wui)

=
1

2
(sTe wse −

∑
i∈e

uT
i wui) . (C2)

This formulation is efficient for two reasons. First, the cost of the operations move from O(|e|2) for Eq. (C1) to O(|e|)
for Eq. (C2), which is relevant when performing computations for large hyperedges. Second, we can batch all the
calculations to obtain the full vector of λe values with efficient matrix operations. In fact, the vector se is the e-th row
of BT u, resulting in an efficient product between a sparse matrix and a vector, and similarly for the second addend
of Eq. (C2).

2. Computation of the u updates

We recall the following definitions. The Hadamard product between two arbitrarily but equally sized arrays is
their elementwise product, which results in a single array with the same shape. For the following derivations, we
intend the broadcasting operation between two arrays as their reshaping so that, for every non-matching dimension, a
dimension of 1 is added. Every operation we present below is broadcast when dimensions do not match, as is custom
for modern scientific computing, and as for all our implementations, which utilize the NumPy and SciPy packages
for the Python coding language. We denote the matrix multiplication as matmul.

The updates in Eq. (8) for uik contain a numerator and a denominator. In the following, we think of i and k as
fixed, indexing the matrix of updated u values, and show efficient formulas for the update computations.

Denominator In the case of the denominator we can obtain the following expression:∑
q∈[K]

wkq

∑
j ̸=i∈V

ujq =
∑
q∈[K]

wkq(sq − uiq)

=
∑
q∈[K]

wkqsq −
∑
q∈[K]

wkquiq ,

where sq is the q-th element of the s array. Both addends are batched via matrix multiplications, respectively the
matrix-vector product w s and matrix-matrix product (uT w)T .

Numerator In the following, call G ∈ RN×|E| the matrix with values Gje := Ae

λe
Bje, which is sparse whenever B

18

is sparse. Then the update formula for uik, can be rewritten as:∑
e∈E:i∈e

Aeρ
(e)
ik =

∑
e∈E:i∈e

Ae

∑
j∈e:j ̸=i

∑
q∈[K]

uikwkqujq

λe

=
∑
e∈E

Ae

λe
Bie

∑
j∈e:j ̸=i

∑
q∈[K]

uikwkqujq

= uik

∑
e∈E

Gie

∑
j∈e:j ̸=i

∑
q∈[K]

wkqujq

= uik

∑
e∈E

Gie

∑
q∈[K]

wkq(seq − uiq)

= uik

∑
q∈[K]

wkq

∑
e∈E

Gieseq︸ ︷︷ ︸
1○ matmul with
output N×K

−
(∑

e∈E

Gie

)
uiq︸ ︷︷ ︸

2○ broadcast Hadamard
product with output N×K

︸ ︷︷ ︸

3○ matmul with output N×K

.

Similarly to the case of the Poisson parameters λe, we can interpret this formula in terms of matrix operations, the
result being the (i, k) index of the matrix of updated u values. Here, the operations 1○ and 2○ yield two N × K
matrices (indexed by i and q), whose difference is multiplied with the w matrix in the matrix multiplication 3○.
The resulting matrix is multiplied element-wise with the u values from the previous iteration. Notice that all the
intermediate arrays appearing in the operations consume memory comparable to that of the incidence B, and all the
matrix multiplications have linear cost in N and |E|, resulting in efficient updates. Similar considerations hold for
the following section.

3. Computation of the w updates

Similar to the u updates above, we look at the numerator and denominator of the w updates in Eq. (9). In
the following, k, q are considered fixed indices for the matrix of updated values w. Once again, notice that all the
operations can be performed in time and memory linear in |E| and N .

Denominator ∑
i<j∈V

uikujq

=
1

2
(
∑
i,j∈V

uikujq −
∑
i∈V

uikuiq)

=
1

2

 sksq︸︷︷︸
outer product of

s with itself

−
∑
i∈V

uikuiq︸ ︷︷ ︸
matmul of u
with itself

 .

19

Numerator Call n ∈ R|E| the vector with elements ne :=
Ae

λe
and F ∈ RN the vector F := Bn. Then:∑

e∈E

Aeρ
(e)
kq

=
∑
e∈E

Ae

∑
i<j∈e

uikwkqujq

λe

= wkq

∑
e∈E

ne

∑
i<j∈e

uikujq

=
wkq

2

∑
e∈E

ne

(
sekseq −

∑
i∈e

uikuiq

)

=
wkq

2

[∑
e∈E

nesekseq −
∑
e∈E

∑
i∈e

neuikuiq

]

=
wkq

2

[∑
e∈E

nesekseq −
∑
e∈E

∑
i∈V

Bieneuikuiq

]

=
wkq

2

[∑
e∈E

nesekseq −
∑
i∈V

uikuiq

∑
e∈E

Biene

]

=
wkq

2

[∑
e∈E

nesek︸ ︷︷ ︸
broadcast
Hadamard

seq

︸ ︷︷ ︸
matmul with
output K×K

−
∑
i∈V

uik uiqFi︸ ︷︷ ︸
broadcast
Hadamard︸ ︷︷ ︸

matmul with
output K×K

]
.

Notice again that both the appearing Hadamard products are broadcast to match the shapes of the arrays with those
of the matrices. Respectively, they are indexed by e, k for the left term nesek, and by i, q for the right term µiqFi.

Appendix D: Average degree

We now derive the analytical form of the average (weighted) degree of a node. Note that similar calculations were
presented in Ruggeri et al. (52), we include them here for completeness. Fix the values of u,w. We define the weighted
degree dwi of a node i as the weighted number of hyperedges it belongs to (2), i.e.

dwi :=
∑

e∈E:i∈e

Ae =
∑

e∈Ω:i∈e

Ae ,

20

where Ae = 0 for non-observed hyperedges. We can find its expectation in closed-form:

E[dwi] =
∑

e∈Ω:i∈e

E[Ae]

=
∑

e∈Ω:i∈e

λe

κe

=
∑

e∈Ω:i∈e

1

κe

(∑
j∈e:j ̸=i

uT
i w uj

+
∑

j<m∈e:j,m, ̸=i

uT
j w um

)

=
∑

e∈Ω:i∈e

1

κe

∑
j∈e:j ̸=i

uT
i w uj

+
∑

e∈Ω:i∈e

1

κe

∑
j<m∈e:j,m, ̸=i

uT
j w um

=
∑

j∈V :j ̸=i

[
D∑

d=2

(
N−2
d−2

)
κd

]
uT
i w uj

+
∑

j<m∈V :j,m ̸=i

[
D∑

d=3

(
N−3
d−3

)
κd

]
uT
j w um

= CuT
i w

∑
j∈V :j ̸=i

uj

+ C ′
∑

j<m∈V :j,m ̸=i

uT
j w um .

The step from the fourth to fifth line is justified by the same reasoning we used for reducing the likelihood of the
model: we count the number of hyperedges where both node i and j are contained. Notice that we can compute this
quantity very efficiently with similar tricks to those from Appendix C.

Appendix E: Details for synthetic data generation

All of our synthetic data are generated by utilizing the method presented in Ruggeri et al. (52). Such procedure
is based on the same generative model of the inference procedure in Eq. (1), hence it allows to specify the u,w
parameters. Optionally, we condition the samples to respect additional constraints, namely a given size sequence (the
number of hyperedges of every dimension) or condition on the sequence of hyperedges observed in the real data.

1. Recovery of community assignments

In Section Recovery of ground-truth communities, we produce two different datasets, and report the re-
sults of different community detection algorithms on such datasets in Fig. 1. The left-hand dataset, is pro-
duced with an assortative matrix w and hard assignments, with N = 500 and K = 2 equally sized commu-
nities. We condition the samples to the following size sequence, where we specify the number of hyperedges
for every size { 2: 500, 3: 400, 4: 400, 5: 400, 6: 600, 7: 700, 8: 800, 9: 900, 10: 1000,
11: 1100, 12: 1200, 13: 1300, 14: 1400, 15: 1500 } . This size sequence also implies an average de-
gree varying between 2.0 (when only considering dyadic interactions) to 248.6 (when all hyperedges are considered).
The right-hand dataset, is produced with an assortative matrix w, N = 500 and K = 3 equally sized communi-

ties. Differently from the above, the assignments are soft, where the ui rows are given by [0.8, 0.2, 0.0], [0., 0.8, 0.2]
and [0.2, 0., 0.8] for nodes belonging to the three communities, respectively. We condition on the following size
sequence { 2: 700, 3: 700, 4: 700, 5: 700, 6: 700, 7: 700, 8: 800, 9: 900, 10: 1000, 11:
1100, 12: 1200, 13: 1300, 14: 1400, 15: 1500 } . The resulting average degree varies between 2.8 (for

21

only dyadic interactions) and 257.8 (when all the hyperedges are considered).
In both cases, we take 10 sampling realizations correspondent to different random seeds. Furthermore, for every seed

we extract 10 different samples, which correspond to the same values of degree and size sequence, and are obtained
at different time stamps at consequent Markov Chain Monte Carlo steps, as from Ruggeri et al. (52). At inference
time, only hyperedges up to the specified dimension D are utilized.

We release part of the synthetic data generated alongside the code that implements our algorithm.

2. Detection of community structure

Here, we describe the synthetic data generated for the experiments in Section Detectability of community configu-
ration. The data are generated with K = 3 communities equally split among N = 500 nodes, maximum hyperedge
size D = 20, and hard assignments u. The affinity matrix w has the following form

w =

 cin cout cout
cout cin cout
cout cout cin

 .

We vary the value of cin and the ratio cout/cin in a grid with ranges cin ∈ [0.1, 1.0] and cout/cin ∈ [0.0, 4]. The
expected degrees at the four extremes are:

58.79 (cin = 0.1, cout/cin = 0.0),

531.77 (cin = 0.1, cout/cin = 4.),

587.86 (cin = 1.0, cout/cin = 0.0),

5317.71 (cin = 1.0, cout/cin = 4.0) .

3. Core-periphery experiments

Here, we describe how to generate the data used in Section Core-periphery structure. To generate samples as
close to the real data as possible, we take an approach similar to experiments for the replication of real data in
Ruggeri et al. (52), and proceed as follows. For every synthetic sample, we obtain the generative parameters u,w
by running the Hy-MMSBM inference procedure on the Enron email dataset. Then, we utilize the inferred values
to sample from the generative model. Other than utilizing the inferred parameters, we condition the samples on the
hyperedges observed in the real data, which is equivalent to conditioning on the observed size sequence (i.e. the count
of observed hyperedges of any given size) and degree sequence (i.e. every node has degree equal to that in the data).
For comparison, we also utilize the configuration model of Chodrow (66). In this case, the sampling is performed
by conditioning on the real data’s size and degree sequences and mixing the hyperedges through their shuffle-based
Markov Chain.

Appendix F: Additional experiments on ground truth recovery

In this section, we present experiments on the recovery of ground truth clusters comparing various algorithms on
an additional benchmark dataset. To this end, we produce synthetic data according to the bipartite formalism of
Larremore et al. (75) by using the function dcsbm hypergraph inside the package xgi (76).
We generate hypergraphs with N = 500 nodes, K = 3 communities, and different values of assortative structure.

Specifically, this model takes in input an Ω matrix that regulates the number of connections within (cin) and between
(cout) communities, and we generate data by varying the strength of the community structure, measured by the ratio
cin/cout. We fix cin = 30000 and vary the ratio cin/cout ∈ [1, . . . , 10], and for each value we generate 10 independent
samples. When cin/cout = 1 we have on average 26639.5 number of hyperedges, an average node degree equal to
536.3 and the average of the maximum hyperedge size is 33. On the other extreme, when cin/cout = 10, the average
number of hyperedges is equal to 21497.1, the average node degree is 117.2 and the average maximum hyperedge size
is 17.7. We show the results of comparing various community detection algorithms in Fig. S1. Hy-MMSBM, Spectral
Clustering and Hypergraph-MT follow the same pattern, improving their performance as the ratio cin/cout increases.
This is expected, as the community structure becomes stronger and easier to detect. Quantitatively, Hy-MMSBM,
Spectral Clustering and Hypergraph-MT perform comparably, and attain good recovery of the planted partitions, with

22

2 4 6 8 10

cin/cout

0.2

0.4

0.6

0.8

1.0

C
S

Hy-MMSBM

Hypergraph-MT

Spectral Clustering

Hypergraph AON-MLL

Figure S1: Recovery of ground-truth assignments on additional synthetic data. We show the Cosine
Similarity between the ground-truth clusters and the node assignments inferred by different algorithms. On the
x-axis, we vary the ratio cin/cout governing the mixing of the hyperedges among different communities. While Hy-
MMSBM, Hypergraph-MT and Spectral Clustering all attain good recovery of the planted partitions, their slight
differences in performances can be attributed to assumptions more or less aligned with those of the data generating
process.

Spectral Clustering performing slightly better than the other methods. Notice that the data are generated with hard
community assignments and follow an assortative structure. Therefore, algorithms with stronger inductive biases, such
as Spectral Clustering and Hypergraph-MT, tend to perform better. In fact, Spectral Clustering can only detect hard
communities, and Hypergraph-MT restricts to assortative configurations while allowing mixed-membership, although,
due to its specific likelihood function, with less mixing than Hy-MMSBM. Despite its flexibility and a generative
process different from that of the data, Hy-MMSBM retrieves good results. Hypergraph AON-MLL, instead, poorly
performs in all scenarios until the assortative structure becomes dominant (cin/cout ∈ {9, 10}), resulting in hyperedges
composed by nodes only from one community.

The results in Fig. S1, together with those presented in Section Recovery of ground-truth communities, allow us to
raise an important point about benchmarking, comparing and utilizing different algorithms. In fact, although relevant
both in terms of self-consistency and effectiveness of the algorithm, the results in Fig. 1 can be interpreted under
the lens of maximum likelihood consistency, as the generative model of the data corresponds to that of Hy-MMSBM.
Generally speaking, however effective, no algorithm is expected to provide any form of free lunch, performing better
than all competitors on all benchmarks. The additional results presented here serve the purpose of showcasing such
a trade-off, and of warning practitioners towards the validation of the algorithms employed.

Appendix G: Additional results on the Enron email dataset

In Fig. S2 we show the relationship between the CP score and the degree of a node on the Enron email dataset.
Similarly to what observed in Section Core-periphery structure, there is a good correspondence between the real data
and the samples.

Appendix H: Experiments on real data

We report the details for the experiments on real data presented in Section Modeling of real data.
First, we report on the AUC calculation methodology, and refer to Contisciani et al. (35) for further details. To

compute the AUC, we split the datasets into a train and test subsets, forming a partition of the hyperedge set. The
model is trained on the train set and the reported AUC is computed on the test set. To compute the AUC, we take
every hyperedge in the test set and a randomly drawn hyperedge of the same size that is not observed in the dataset,
and compare the Poisson probabilities assigned to both by the model. The mean and standard deviations reported in

23

101 103

Core-Periphery Score

0

200

400

600

800

1000

D
eg

re
e

Enron Email

Hy-MMSBM

Configuration Model

Figure S2: Recovery of structural core-periphery information. Additional results on the Enron email
dataset (63). We plot the degrees of the nodes against their Core-Periphery Scores computed with HyperNSM (64) on
the input Enron email (yellow), one synthetic sample generated with Hy-MMSBM (blue), and one synthetic sample
generated with the configuration model for hypergraphs (magenta).

the main text are obtained from 10 models trained with different random seeds. Due to the high computational cost
of the AUC calculations, we utilize a ratio of 0.8/0.2 for the train/test partition for all but the Amazon dataset, for
which we set a 0.999/0.001 ratio. Notice that the low variance of the AUC scores for the Amazon dataset suggests
that the number of hyperedges compared still yields a statistically meaningful calculation.

Second, we report on the procedure to select the number of communities K for the experiments on real data. The
value of K is inferred by computing the AUC scores resulting from a grid of values ranging from K = 2 to K = 30, and
selecting the one attaining the highest AUC score. For computationally intensive datasets with more than N = 50000
nodes, namely Trivago 2core, Arxiv and Amazon, we arbitrarily set the value of K to the number of covariates (notice
that covariate information is not utilized in any other way). The results of this procedure are the K values presented
in Table I.

	Community Detection in Large Hypergraphs
	Abstract
	Introduction
	Generative model
	Inference
	Optimization procedure
	Identifiability, interpretation and theoretical implications
	Practical implementation and efficiency

	Recovery of ground-truth communities
	Detectability of community configuration
	Core-periphery structure
	Modeling of real data
	Discussion
	Acknowledgements
	References
	Maximum-a-Posteriori (MAP) estimation
	Identifiability
	Identifiability for the fully Bayesian model
	Identifiability for the ``half-Bayesian'' model

	Computational considerations
	Computation of e
	Computation of the u updates
	Computation of the w updates

	Average degree
	Details for synthetic data generation
	Recovery of community assignments
	Detection of community structure
	Core-periphery experiments

	Additional experiments on ground truth recovery
	Additional results on the Enron email dataset
	Experiments on real data

