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We present a probabilistic generative model and an efficient algorithm to both perform community
detection and capture reciprocity in networks. Our approach jointly models pairs of edges with
exact 2-edge joint distributions. In addition, it provides closed-form analytical expressions for both
marginal and conditional distributions. We validate our model on synthetic data in recovering
communities, edge prediction tasks, and generating synthetic networks that replicate the reciprocity
values observed in real networks. We also highlight these findings on two real datasets that are
relevant for social scientists and behavioral ecologists. Our method overcomes the limitations of
both standard algorithms and recent models that incorporate reciprocity through a pseudo-likelihood
approximation. We provide an open-source implementation of the code online.

I. Introduction

Network models are powerful and flexible tools for representing complex interactions between individual elements
in many different fields [7, 16, 28, 29]. For instance, in social support networks, each individual is a person or the
representative of a household, and each link, tie or arc represents the presence or intensity of a relationship between two
individuals. Understanding what core patterns drive the observed set of interactions is of high relevance for scientists
and practitioners willing to fully exploit the increased availability of networked datasets. A popular approach to
modeling networks is that of generative models, in particular latent variable models [10]. They are probabilistic models
that introduce latent variables to incorporate domain knowledge and capture complex interactions. Of particular
interest, is the possibility of recovering clusters of individuals that behave similarly, a problem named community
detection [8]. In this framework, the latent variables represent the nodes’ community memberships and the structure
of interactions between communities, and the aim is to infer those quantities from the data [1, 6].

Despite their flexibility and computational efficiency, these models have a main flaw: they fail in reproducing
important structural network properties such as transitivity, reciprocity, or triadic closure [19, 22, 24]. Synthetic
networks generated from these models tend to have significantly lower values of these properties than those observed
in real networks.

One possible reason of this problem is the common assumption of conditional independence: conditioned on the
latent variables, networks edges are independent and the joint probability distribution is factorized accordingly. This
means that an interaction from node i to node j is not directly affected by the interaction in the opposite direction,
i.e., the edge j → i. In latent variable models with community structure, as the stochastic block model [12] and
its variants, these two edges are fully explained by the membership of the two nodes. While this assumption has
been used to obtain tractable problems, it can be too restrictive in certain real scenarios where non-trivial interaction
patterns are observed. For instance, in social support networks, it is likely that the existence of interactions from
individual i to individual j does not depend only on the groups that i and j belong to, but also on the fact that
j has already previously helped i. This tendency of forming mutual connections is called reciprocity [27] and it
is an important feature in social networks [20], journal citations [15] and email communications [9, 17], to name a
few. While exponential random graph models can represent such network properties in some form [13, 18, 21, 25],
they do not incorporate a priori latent variables as community membership. In the previous example, incorporating
both community structure and the structural property of reciprocity would help us to understand how an individual
interacts with others. Hence, there is a need to incorporate both these phenomena within a unique probabilistic
framework.

Recently, Safdari et al. [22] tackled this problem by modeling the conditional distribution of pairs of edges between
the same nodes, an assumption also shared by seminal works [12, 26]. Safdari et al. [22] include both communities
and reciprocity effects inside the likelihood distribution of the network. This resulted in networks samples with values
of reciprocity more similar to those of real data, and better edge predictions. However, this model relies on a pseudo-
likelihood approximation for parameters’ inference, as the model only specifies conditional distributions, but not the
joint distribution of a pair of edges. As a result of this approximation, the model is not robust in community detection
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in the regime where reciprocity plays a role. Peixoto [19] has shown similar results in terms of triadic closure with a
model based on Bayesian inference that combines community structure and this network property. This model also
assumes conditional independence among edges and models conditional distributions of triadic edges.

Here we propose a model that takes into account community structure and reciprocity by specifying a closed-form
joint distribution of a pair of network edges, which does not involve approximations. To estimate the likelihood of
network ties, we use a bivariate Bernoulli distribution–special case of the multivariate Bernoulli distribution– where the
log odds are linked to community memberships, and pair-interaction variables. Although these patterns are indicative
of two distinct mechanisms of network formation, namely, community structure, and reciprocity, it is reasonable to
expect that they are related to each other. For instance, i) the preferred connection between nodes of the same
community can induce the presence of reciprocated edges involving similar nodes, and ii) the tendency of forming
mutual connections can induce the formation of groups of nodes. This conflation means we cannot reliably interpret the
underlying mechanisms of network formation merely from the abundance of reciprocated edges or observed community
structure in network data.

Our model takes advantage of the useful properties of the bivariate Bernoulli distribution, i.e., the independence
and the uncorrelatedness of the component random variables are equivalent and both the marginal and conditional
distributions still follow the Bernoulli distribution. Hence, our model has closed-form analytical expressions and
enables practitioners to address with more accuracy questions that were not fully captured by standard models; for
instance, predicting the joint existence of mutual ties between pairs of nodes. In addition, its algorithmic implemen-
tation is efficient and scalable to large system size, as it exploits the sparsity of network datasets, thus allowing its
broad applications across disciplines, e.g., citation networks or neuronal networks that consist of several thousand of
nodes.

II. The model

The main goal of this work is to develop a probabilistic generative model with latent variables that better captures
real scenarios where non-trivial interaction patterns are observed in networks. This is achieved by modeling jointly the
edges between the same pair of nodes, differently from standard models that assume their conditional independence
given the latent variables. Formally, we model the interactions of N individuals as a binary asymmetric matrix A,
with entries Aij defining the presence or the absence of connections from node i to node j. Our model considers
jointly the pair A(ij) := (Aij , Aji) distributed with a bivariate Bernoulli distribution of parameters Θ, which takes
values from (0, 0), (0, 1), (1, 0), and (1, 1) in the Cartesian product space {0, 1}2 = {0, 1} × {0, 1}. Its probability
density function can be written as

P (A(ij)|Θ) = P (Aij , Aji|Θ) (1)

= p
AijAji

11 p
Aij(1−Aji)
10 p

(1−Aij)Aji

01 p
(1−Aij)(1−Aji)
00

=
exp

{
Aijfij +Ajifji +AijAjiJ(ij)

}
Z(ij)

,

where Z(ij) is a normalization constant and p00 = 1/Z(ij). In addition, p00 + p10 + p01 + p11 = 1, and

fij = log

(
p10
p00

)
, fji = log

(
p01
p00

)
, J(ij) = log

(
p11p00
p10p01

)
. (2)

Thus, P (Aij , Aji|Θ) can be viewed as a member of the exponential family, and can be represented in a log-linear
formulation as in Equation (1), where fij , fji, and J(ij) represent the natural parameters. J(ij) is called cross-product
ratio between Aij and Aji and represents the log-odds of the model. Similar to the Ising model [14], if J(ij) = 0
then the components of the bivariate Bernoulli random vector (Aij , Aji) are independent, thanks to the equivalence of
independence and uncorrelatedness for multivariate Bernoulli distributions [5]. In this case, the resulting model would
be equivalent to consider the product of two independent Bernoulli distributions. Another interesting property of the
bivariate Bernoulli is that both marginal and conditional distributions are univariate Bernoulli. Thus, our model has
closed-form equations for joint, conditional and marginal distributions.

We now assume that a set of latent variables capture hidden patterns of the data. There are many possibilities
to add these variables: one could act directly on the marginal or conditional first moments, as well as modelling
separately the different pαβ , with α, β ∈ {0, 1}. However, we model the log ratios to ease interpretability and the
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analytical computations. Specifically, we assume

fij = log λij (3)
fji = log λji (4)

J(ij) = log η , (5)

where

λij =

K∑
k,q=1

uikvjqwkq (6)

captures mixed-membership community structure as in De Bacco et al. [6] and η is the pair-interaction coefficient.
The parameters uik, vjq are entries of K−dimensional vectors ui and vi, the out-going and in-coming communities
respectively; and wkq are the entries of a K ×K affinity matrix, which regulates the structure of communities, e.g.,
assortative when its diagonal entries are greater than off-diagonal entries (homophily). Thus, Θ = (u, v, w, η) are the
latent parameters we want to infer. Through Equations (3)–(5) we encode the assumptions that community structure
drives the process of edge formation, and the edges of a pair of nodes depend on each other explicitly according to
the parameter η. When J(ij) = 0, the probability of A(ij) is given by the agreements of the communities of i and j
only; while a positive value for the log-odds will boost the chance to observe a tie between them. Conversely, J(ij) < 0
decreases the value of p11, the probability that both edges exist. Considering Equation (5): 0 < η < 1 and η > 1
codify a negative and positive interaction between i and j, respectively. The first lowers the probability of observing
both ties i→ j and j → i, while the latter increases it. Finally, η = 1 implies no interaction between Aij and Aji.

With this model at hand we can estimate observable quantities, valuable for practitioners. For instance, one can
ask about the expected value of a given tie in general or conditioned on the existence of the opposite one, quantities
defined as:

E [Aij ] =
λij + ηλijλji

Z(ij)
, (7)

E [Aij |Aji] =
ηAjiλij

ηAjiλij + 1
, (8)

and similar for E [Aji] and E [Aji|Aij ], see Appendix A. With these quantities one can perform edge prediction tasks,
which is crucial when we are limited to a subset of the dataset.

III. Inference

We infer the parameters using a maximum likelihood approach. Specifically, we maximize the log-likelihood

L(Θ) =
∑
i,j

fijAij +
1

2

∑
i,j

J(ij)AijAji −
1

2

∑
i,j

logZ(ij) (9)

with respect to Θ = (u, v, w, η). Adopting a variational approach, this is equivalent to maximize

L(ρ,Θ) =
∑
i,j

[
Aij

∑
k,q

ρijkq log
(uikvjqwkq

ρijkq

)
+

1

2
AijAji log η (10)

− 1

2
log
(∑
k,q

uikvjqwkq +
∑
k,q

ujkviqwkq + η
∑
k,q

uikvjqwkq
∑
k,q

ujkviqwkq + 1
)]

,

where we introduced the variational distribution ρijkq over the parameters and used Jensen’s inequality. The equiva-
lence holds when

ρijkq =
uikvjqwkq∑
k,q uikvjqwkq

. (11)
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We estimate the parameters by using an expectation-maximation (EM) algorithm where at each step one updates
ρ using Equation (11) (E-step) and then maximizes L(ρ,Θ) with respect to Θ = (u, v, w, η) by setting partial
derivatives to zero (M-step). This iteration is repeated until the log-likelihood converges. The exact equations for
the updates of the parameters are in Appendix A, and the whole routine is described in Algorithm 1. This algorithm
is computationally efficient and scalable to large system sizes as it exploits the sparsity of the dataset. Indeed, all
the updates involved in the numerator sum over Aij , hence only the non-zero entries count, giving an algorithmic
complexity of O(M K2), where M =

∑
i,j Aij is the number of ties.

Algorithm 1 JointCRep: EM algorithm
Input: network A = {Aij}Ni,j=1,

number of communities K.
Output: membership matrices u = [uik] , v = [vik]; network-affinity matrix w = [wkq]; pair interaction parameter η.
Initialize u, v, w, η at random.
Repeat until L convergences:
1. Calculate ρ (E-step):

ρijkq =
uikvjqwkq∑
k,q uikvjqwkq

2. Update parameters Θ (M-step):
i) for each pair (i, k) update memberships:

uik =

∑
j,q Aijρijkq∑

j

[∑
q vjqwkq(1+ηλji)

λij+λji+ηλijλji+1

]
vik =

∑
j,q Ajiρjiqk∑

j

[∑
q ujqwqk(1+ηλij)

λij+λji+ηλijλji+1

]
ii) for each pair (k, q) update affinity matrix:

wkq =

∑
i,j Aijρijkq∑

i,j

[
uikvjq(1+ηλji)

λij+λji+ηλijλji+1

]
iii) update pair-interaction parameter:

η =

∑
i,j AijAji∑

i,j

[
λijλji

λij+λji+ηλijλji+1

]

Our model (JointCRep) aims to generalize the method presented in Safdari et al. [22] (CRep), which was of inspiration
for the latent variables underlying the generative process. We refer to [22] for a detailed explanation of this method
and summarize the main similarities and differences among the models in Table I.

IV. Results

In this section, we present the results obtained in synthetic and real networks. For comparison we use CRep, the
model that combines communities and reciprocity with a pseudo-likelihood approximation [22], and MT, a community
detection-only generative model with a maximum likelihood approach [6]. Even if both of them posit a Poisson
likelihood, in this work we use only binary networks for fair comparisons with our model JointCRep.

A. Results on synthetic data

We first validate the performance of the different methods on synthetic data generated with the model proposed
in this work. Being a generative model, given as input an initial set of parameters, one can draw a directed network
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CRep JointCRep

Networks Weighted Binary
Likelihood Poisson Bivariate Bernoulli

Marginal mean E [Aij ] =
λij+ηλji

1−η2 E [Aij ] =
λij+ηλijλji

Z(ij)

Conditional mean E [Aij |Aji] = λij + ηAji E [Aij |Aji] = ηAjiλij

ηAjiλij+1

Relationship η vs r Linear Sublinear
Contribution λ vs η Additive Multiplicative

Contribution r Non negative Real
Closed-form marginal No Yes
Closed-form conditional Yes Yes

Closed-form joint No Yes

TABLE I: Properties of CRep and JointCRep models. λ represents the community effect and η is the
parameter linked to the reciprocity r.

with a community structure, and a reciprocity value from the expression in Equation (1). The generative process
is described in detail in Appendix B. We analyse networks with N = 1000 nodes, K = 2 overlapping communities,
〈k〉 = 20 average degree and different values of the pair-interaction parameter η such that we obtain networks with
reciprocity values (r) in the interval [0, 0.8]. We generate 10 random samples for each value of r.

We test the ability of the models to i) recover the communities, ii) perform edge prediction tasks, and iii) generate
sample networks that replicate relevant network quantities.

1. Community detection

To evaluate the performance of the methods on recovering the communities, we use the cosine similarity (CS), a
measure useful to capture mixed-membership communities, as in this case. It ranges from 0 to 1, where 1 means
perfect recovery. We calculate the average of the cosine similarities of both membership matrices u and v, and then
averaging over the nodes. The results are shown in Figure 1. In the scenarios with low reciprocity values (r < 0.4)
all models perform good. However, as r increases, CRep worsens its performance while JointCRep keeps having good
results comparable to those of the community-only algorithm, MT. The big drop of CRep is due to the fact that
this model gives increasingly less weight to communities as reciprocity increases, as pointed out in Safdari et al. [22].
Conversely, JointCRep is not affected by the different reciprocity values of the data and still performs as good as MT
even by adding another parameter to the model.

2. Edge prediction

The edge prediction task consists in estimating the existence of an edge by using the inferred parameters. The
main quantity used as a score for the estimation of the entries of the adjacency matrix A is the expected value of
the marginal distribution. However, our model also provides the conditional distribution; hence its expected value
can also be used as a score. The difference lies in the nature of the question we try to answer. We use the marginal
distribution to merely predict the existence of an edge, without considering additional information. On the other
hand, with the conditional distribution, we ask what is the probability of an edge i→ j, conditioned on observing the
state of the opposite edge j → i, i.e., knowing if it exists or not. Here, we exploit the presence or the absence of the
edge in the opposite direction to better predict each given entry. Furthermore, our model specifies a joint distribution
over the edges of a pair of nodes, and this allows us to answer questions more accurately compared to the standard
models, which do not specify a joint distribution. For instance, what is the probability of jointly observing both edges
or even only an edge in one direction while not observing the other in the opposite? Our model directly captures
this by specifying P (Aij , Aji|Θ), while others positing a conditional independence assumption can only compute an
approximation as P (Aij |Θ)P (Aji|Θ).

In our experiments below, we test edge prediction with various scores by using 5-fold cross-validation. Specifically,
we divide the dataset into five equal-size groups (folds) and train the models on four of them (training data) for
learning the parameters; this contains 80% of the possible pairs of nodes in the network, so that we hide pairs of
entries (Aij , Aji) from the training. One then predicts the existence of edges in the held-out group (test set). As



6

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
r

0.5

0.6

0.7

0.8

0.9

1.0

C
S

JointCRep CRep MT

FIG. 1: Community detection in synthetic networks. Cosine similarity (CS) in synthetic networks with
N = 1000 nodes, K = 2 overlapping communities, 〈k〉 = 20 average degree, and different values of reciprocity r.
Results are averages and standard deviations over 10 synthetic networks.

performance metrics, we measure the AUC on the test data, i.e., the probability that a randomly selected edge has
higher expected value than a randomly selected non-existing edge. We compute both the regular, and conditional
AUC values. To estimate the regular AUC, we take the expected value EP (Aij |Θ)[Aij ] as the score; while for the
conditional AUC, the expected value over the conditional distribution, i.e., EP (Aij |Aij ,Θ)[Aij ] acts as the score. The
latter cannot be computed for the community detection-only algorithm, as the marginal distribution is the same as
the conditional, and thus the two AUC values coincide. We provide more details in Appendix C 1, where we also show
the ability of our model on edge prediction tasks by using the joint distribution.

Figure 2 displays the results of the marginal and conditional edge prediction for the different models. JointCRep
significantly improves the performance of CRep when using the marginal expected value, and it performs as good as
MT. The latter, however, is not able to exploit the additional information given by the existence (or non-existence)
of the edge in the opposite direction. This dependence is crucial in networks with reciprocity, i.e., most of the real
world datasets, and models with an explicit conditional distribution can better adopt this information to obtain higher
performance in edge prediction. Indeed, JointCRep and CRep remarkably perform this task, and our model presents
more robust results both in terms of standard deviation, and growth.

3. Reproducing the topological properties

A notable property of generative models is their ability to produce synthetic networks based on real-world datasets,
such that the synthetic networks imitate the topological features of the real datasets. Following the approach in
Safdari et al. [22], for each individual network, we infer the network parameters by applying each model. Then, we
use these inferred parameters to generate five network samples. We compare topological properties of these samples
with those observed in the ground truth networks used to infer the parameters.

In particular, we are interested in measuring reciprocity. Figure 3 shows the performance of each model in repro-
ducing this feature in sampled networks. As it is expected, MT is not capable of reflecting the observed value of the
reciprocity in the ground truth network, a clear indication of the shortcoming of models based purely on community
structure, which indeed limits their applications. Conversely, JointCRep perfectly reproduces this quantity. CRep gen-
erates sampled networks with reciprocity lower than the ground truth due to the fact that it uses a Poisson likelihood
resulting in weighted networks. Additional results are provided in Appendix C 2.

To summarize the results on synthetic networks, JointCRep is capable of recovering communities on networks
with varying reciprocity values, performing as good as models that are based purely on community structure. This
capability overcomes the limitations of the recent CRep model. Moreover, JointCRep includes many performance
enhancements in the edge prediction task, i.e., showing improved results in terms of marginal AUC and more robust
conditional AUC values. Furthermore, JointCRep is also capable of generating sampled networks with topological
features that resemble that of the real data, e.g., reciprocity and average degree. Collectively, these findings show
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conditional AUC
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FIG. 2: Edge prediction in synthetic networks. Synthetic networks with N = 1000 nodes, K = 2 overlapping
communities, 〈k〉 = 20 average degree, and different values of reciprocity r. Results are averages and standard
deviations over 10 synthetic networks and over 5-folds of cross-validation test sets. Edge prediction performance is
measured with AUC and the baseline is the random value 0.5.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
r

0.0

0.2

0.4

0.6

0.8

r

Data
CRep

JointCRep
MT

FIG. 3: Reciprocity in sampled synthetic networks. Synthetic networks with N = 1000 nodes, K = 2
overlapping communities, 〈k〉 = 20 average degree, and different values of reciprocity r. Results are empirical
averages and standard deviations over 50 samples of 10 independent synthetic networks (five samples per input
network). We measure the reciprocity and the dark red markers indicate the average on 10 input networks.

that JointCRep is able to overcome the limitations of both the community detection-only algorithm MT and the model
that incorporates reciprocity through the pseudo-likelihood approximation CRep.

B. Analysis of a high-school social network

We now study the social network that describes friendships between boys in a small high-school in Illinois that
was collected in the fall of 1957 [3]. Here, a node represents a boy and an edge from an individual i to j shows
that node i claimed to be friend of node j. We pre-processed the dataset by removing self-loops and isolated nodes.
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The resulting directed network has 31 nodes, 100 edges and reciprocity equal to 0.52, i.e., only half of the edges
(friendship relationships) are reciprocated. There is no additional metadata to describe the nodes, nor is there an
available ground truth for the latent parameters. Therefore, we estimate the number of communities K by performing
edge prediction task via 5-fold cross-validation with different values of K. For each method the best performance
in terms of AUC was achieved with K = 4. Figure 4 visualizes the mixed-membership partitions resulting from the
matrix u, inferred by the different methods (similar results are obtained for v). Here we use the inferred value of u,
which is obtained from the run with the highest log-likelihood over 100 random initializations of the parameters. All
the algorithms assign most of the students to the same groups, except from a central block. Here, MT infers mostly
hard memberships and balances the number of nodes in each cluster. Instead, CRep allocates only three nodes with
small degree to the green community while places the nodes with higher degree in other clusters. JointCRep, shows a
partition that lies in between, by inferring mixed-memberships for those nodes known as bridges.

JointCRep CRep MT

FIG. 4: Community detection in the high-school social network. Mixed-membership partitions determined
by the matrix u inferred by JointCRep, CRep, and MT. Node size is proportional to the degree (in- and out-degree).

Given the inferred parameters, we can test the ability of the models to reconstruct the input network, by using
either the marginal expected value EP (Aij |Θ)[Aij ], or the conditional expected value EP (Aij |Aij ,Θ)[Aij ] as the score.
Note that the latter is not available for MT because the conditional and marginal distributions coincide. Figure 5
presents the results, where edge width and darkness of the reconstructed networks are proportional to the weight
given by the expected score (for visualization clarity, we show only edges with weight greater than 0.2). The network
estimated by CRep, which uses the expected value of the marginals, does not capture the structure of the data
magnificently, as it overestimates the presence of edges. This model specifies conditional distributions and relies on
a pseudo-likelihood approximation; since this approach is not necessarily accurate enough to approximate marginals,
such results are expected. Instead, MT and JointCRep estimate a sparser representation that is closer to the observed
network. However, MT is not able to notably detect reciprocated edges, e.g., (10, 18) or (64, 67), while JointCRep
remarkably recovers this type of interactions more precisely. For both JointCRep and CRep, including the conditional
expected values improves their accuracy in reconstruction, resulting in identifying reciprocal edges correctly. The
difference between the two models lies on the intensity: for instance JointCRep predicts the pair of edges between
nodes 10 and 18 with a high probability, while CRep assigns a much lower probability to them. Hence, JointCRep is
not only able to predict edges more precisely, but it also does so with higher probability.

To further compare the strength of these methods, we examine their performance in generating samples that resemble
the observed network. For each model, we use the inferred parameters to generate five synthetic networks, as shown
in Figure 6. Again, we notice how the samples generated by JointCRep better resemble the observed network, as it is
easier to distinguish the four blocks generated by JointCRep, compared to the samples from the other algorithms. In
particular, JointCRep finds denser groups given by reciprocated edges.

C. Analysis of vampire bat network

As a second example, we study the network of food sharing interactions in captive vampire bats, collected by Carter
and Wilkinson [2]. These animals often regurgitate food to roost-mates that fail to feed. The decision of who to feed
may depend on both kin relatedness and reciprocal sharing. Hence, in this dataset we expect reciprocity to be an
important factor for tie formation. In the study, they fasted 20 vampire bats and induced food sharing on 48 days,
over a 2 year period. They showed that reciprocal sharing predicts future food regurgitation more than relatedness
or other non-kin food sharing behaviors, such as harassment.
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FIG. 5: High-school network reconstruction. (left) High-school data and (right) network reconstructions by
using as a score either the marginal expected value EP (Aij |Θ)[Aij ] or the conditional expected value
EP (Aij |Aij ,Θ)[Aij ] with the inferred parameters. Note that the last is not available for MT because the conditional
and marginal distributions coincide. Edge width and darkness are proportional to the weight (given by the expected
score); for visualization clarity we show only edges with weight greater than 0.2. Node size is proportional to the
degree (in- and out-degree) and node labels represent node IDs.
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FIG. 6: High-school network samples. (left) High-school data and (right) five random samples generated by
different methods with the inferred parameters.

From the collected data, we construct a directed network by building an edge from a bat i to another j if node
i fed j at least once. We removed isolated nodes and obtained a network with 19 nodes, 103 edges and reciprocity
equal to 0.64. We fix the number of communities K = 2 and analyse the data with the different methods. We are
interested in measuring the ability of the models to recover the observed network with the inferred parameters, in
particular their ability to recover topological properties such as reciprocity. To this aim, we consider the marginal and
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the conditional expected values, as in Section IVB. Figure 7 shows the adjacency matrix of the data and its different
estimates, obtained by each method. The network embodies a core-periphery structure, where the main core (labels
0− 9) is made of female bats. JointCRep recovers this structure more accurately than other methods, the off-diagonal
entries show this fascinating result clearly, while the other methods overestimate the amount of edges. Similarly as
observed in the high-school network, our model is not only more accurate, but also assigns higher probabilities to
these entries.
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FIG. 7: Vampire bat network reconstruction. (Left) The adjacency matrix of the vampire bat data and
(right) its estimates by using as a score either the marginal expected value EP (Aij |Θ)[Aij ] or the conditional
expected value EP (Aij |Aij ,Θ)[Aij ] with the inferred parameters. Note that the last is not available for MT because
the conditional and marginal distributions coincide. The intensity of the entries is proportional to the score
probability, as shown in the colorbar. The labels near the ticks represent node IDs.

In addition to the marginal and conditional expected value, we can consider the joint distribution to estimate
the entries of the adjacency matrix. This is equivalent to assign a value to each pair (Aij , Aji) from the set
{(0, 0), (0, 1), (1, 0), (1, 1)}, that transforms the edge prediction task into a classification problem. We predict the label
associated to the highest probability among [p00, p01, p10, p11], where these are computed by using Equations (S1)–(S4)
with the inferred parameters. We assess the goodness of our performance by computing the precision and recall of
the predicted labels versus the true labels, as shown in Figure 8. The precision identifies the proportion of correctly
classified observed entries. The figure illustrates high precision values consistently across edge labels, as the highest
entries are along the diagonal. In particular, JointCRep is able to correctly classify the pairs (0, 0) and (1, 1). Ob-
serving where our model misclassifies, this mainly happens by predicting no edges, i.e., assign label (0, 0), when the
true ones are either (0, 1) or (1, 0), implying a tendency to estimate sparser networks. On the other hand, the recall
indicates the proportion of predicted edges being correctly classified. Also in this case, the highest entries are in the
main diagonal and in predicting the pairs (0, 0) and (1, 1). Overall, in this case we obtain higher intensities as for the
precision, indicating the tendency of labeling the predicted edges with the right type.

To conclude our analysis, we compare five random samples generated with the inferred parameters of each model and
check whether they reproduce topological properties as those observed in the real data. Table II shows that JointCRep
outperforms other models in terms of all topological properties. In particular, it generates sampled networks with
reciprocity values closest to the real data, but also reproduces realistic values of the clustering coefficient.

V. Discussion and conclusion

In this paper, we have presented a generative model called JointCRep that takes into account community struc-
ture and reciprocity by specifying a closed-form joint distribution of a pair of network edges, without relying upon
approximations. Our model also provides closed-form analytical expressions for both the marginal and conditional
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FIG. 8: Precision and recall of the vampire bat network. Statistics based on the confusion matrix that
compares the entries of the adjacency matrix and the estimates obtained with the joint distribution of JointCRep.
The precision is given by a normalization by row, while the recall accounts for the normalization by column. The
label (0, 0) denotes no interactions between nodes i and j; labels (0, 1) and (1, 0) considers the pair of edges where
only one edge in one direction is present, and the label (1, 1) indicates reciprocated edges.

N M 〈k〉 r cc

Data 19 103 10.84 0.64 0.54
JointCRep 18.4± 0.89 100.4± 5.41 10.92± 0.38 0.61± 0.03 0.55± 0.05

CRep 18.2± 0.84 74.2± 5.40 8.16± 0.54 0.51± 0.04 0.27± 0.06

MT 17.4± 1.14 70± 7.38 8.06± 0.83 0.36± 0.06 0.37± 0.01

TABLE II: Topological properties in vampire bat and its sampled networks. Results are averages and
standard deviations over five samples. We measure the number of nodes N , the number of edges M , the average
degree 〈k〉, the reciprocity r, and the clustering coefficient cc.

distributions, and enables practitioners to address with more accuracy questions that were not fully captured by
standard models; for instance, predicting the joint existence of mutual ties between pairs of nodes.

We first validated our model by applying it to synthetic network datasets, where we achieved remarkable performance
in recovering communities, edge prediction tasks, and generating synthetic networks that replicate topological features
observed in real networks. We then analyzed two real datasets that are relevant for social scientists and behavioral
ecologist, where we found that JointCRep obtains more robust and interpretable results. Collectively, our model is
able to overcome the limitations of both standard algorithms and recent models that incorporate reciprocity through
the pseudo-likelihood approximation.

The framework we described could be extended in a number of ways. JointCRep analyses binary and single-
layer networks; therefore, possible extensions could account for weighted and possibly multilayer networks, where we
have edges of different types. Another approach could consider dynamic networks, which have evolving structure over
time, and adapt the parameters accordingly [23]. Moreover, our model captures the reciprocity through a unique pair-
interaction parameter for the whole network. This model could be improved in the future by including node-dependent
parameters in scenarios where reciprocity varies between individuals. Furthermore, many real world datasets contain
attributes that provide additional information about their features. Incorporating these extra informations on nodes
could result in a more realistic analysis [4].

JointCRep, to the best of our knowledge, is the first such method for fully capturing reciprocity by jointly modeling
pairs of edges with exact 2-edge joint distributions. We believe it will serve as a baseline for future models that tackle
more complicated interactions that go beyond pairwise interaction, e.g., triadic closure [19].
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Data and materials availability:

An open-source algorithmic implementation of the model together with the code to generate synthetic data is
publicly available and can be found at https://github.com/mcontisc/JointCRep.
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Supporting Information (SI)

A. Detailed derivations

Combining Equations (2)–(5) we get the explicit mapping between the latent variables and the instances of the
joint probability in Equation (1):

p01 =
λji
Z(ij)

(S1)

p10 =
λij
Z(ij)

(S2)

p11 =
ηλijλji
Z(ij)

(S3)

p00 =
1

Z(ij)
, (S4)

where the normalization constant is:

Z(ij) = λij + λji + ηλijλji + 1 . (S5)

One property of the bivariate Bernoulli is that both marginal and conditional distributions are univariate Bernoulli.
Thus, the marginal distributions of Aij and Aji have densities:

P (Aij) = (p10 + p11)
Aij (p00 + p01)

(1−Aij) (S6)

P (Aji) = (p01 + p11)
Aji(p00 + p10)

(1−Aji) , (S7)

while the conditional distributions are the following:

P (Aij |Aji) =
(

p(1, Aji)

p(1, Aji) + p(0, Aji)

)Aij
(

p(0, Aji)

p(1,ji ) + p(0, Aji)

)(1−Aij)

(S8)

P (Aji|Aij) =
(

p(Aij , 1)

p(Aij , 1) + p(Aij , 0)

)Aji
(

p(Aij , 0)

p(Aij , 1) + p(Aij , 0)

)(1−Aji)

. (S9)

In addition to the expected values reported in the manuscript, we can also compute the variances and the covariance
between the random variables:

Var [Aij ] =

(
λij(1 + ηλji)

Z(ij)

)(
1 + λji
Z(ij)

)
(S10)

Var [Aji] =

(
λji(1 + ηλij)

Z(ij)

)(
1 + λij
Z(ij)

)
(S11)

Cov [Aij , Aji] =
ηλijλij − λijλij

Z2
(ij)

. (S12)

At each step of the EM algorithm one updates ρ using Equation (11) (E-step) and then maximizes L(ρ,Θ) with
respect to Θ = (u, v, w, η) by setting partial derivatives to zero (M-step). The derivative w.r.t. η is given by:

∂L(ρ,Θ)

∂η
=

1

2η

∑
i,j

AijAji −
1

2

∑
i,j

λijλji
λij + λji + ηλijλji + 1

!
= 0 , (S13)

that leads to:

η =

∑
i,j AijAji∑

i,j

[
λijλji

λij+λji+ηλijλji+1

] . (S14)
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Similarly, we get the updates for u, v and w:

uik =

∑
j,q Aijρijkq∑

j

[∑
q vjqwkq(1+ηλji)

λij+λji+ηλijλji+1

] (S15)

vik =

∑
j,q Ajiρjiqk∑

j

[∑
q ujqwqk(1+ηλij)

λij+λji+ηλijλji+1

] (S16)

wkq =

∑
i,j Aijρijkq∑

i,j

[
uikvjq(1+ηλji)

λij+λji+ηλijλji+1

] . (S17)

B. Benchmark generative model

The model we propose in the manuscript is able to generate synthetic data with intrinsic community structure
and a reciprocity value. It takes as input a set of membership vectors, ui and vi, affinity matrix w, and a pair-
interaction parameter η; the output is a directed and binary network with adjacency matrix A whose pairs of edges
are conditionally independent from each other. We use the same formulation as in Safdari et al. [22], but our approach
differs in that edges between a given pair of nodes are generated stochastically according to the joint probability in
Equation (1), and not according to a two-step sampling procedure. In detail, we assign a value to each pair (Aij , Aji)
by considering the vector of cumulative probabilities built using Equations (S1)–(S4). To enforce sparsity, we multiply
λ by a constant ζ, and in order to automatically rescale the expected value in Equation (7) we have to impose

E [M ] =
∑
i,j

ζ λij + η ζ λij ζ λji
ζ λij + ζ λji + η ζ λij ζ λji + 1

(S1)

and solve with respect to ζ, where E [M ] is the expected number of edges, a quantity given in input.
The benchmark we propose here differs from the one presented in Safdari et al. [22] for multiple reasons, as we

summarize in Table I. In addition to those, it is worth mentioning that the competing benchmark in Safdari et al. [22]
depends on a variable, crratio = 1− η, that controls the proportion of edges generated purely by either community or
reciprocity effect. This implies that in order to have high reciprocity we may weaken the impact of community effect.
This does not happen with the model we propose here, as tie formation can be highly influenced by both reciprocity
and community structure at the same time, thus providing a more reliable and truthful representation in certain real
world examples.

In the manuscript, we use networks generated with the benchmark proposed above where we fix N = 1000
nodes, K = 2 overlapping communities, 〈k〉 = 20 average degree, and different values of the pair-interaction
parameter η such that we obtain networks with reciprocity values r in the interval [0, 0.8]. In detail, we use
η ∈ {0.1, 10, 20, 40, 80, 140, 280, 500, 1500} to get r ∈ {0, 0.1, 0.2, . . . , 0.8}. To generate the membership matrices u
and v we first assign an equal-size unmixed group membership and then we apply the overlapping to 20% of the nodes
by drawing those entries from a Dirichlet distribution with parameter α = 0.1. The affinity matrix w is generated
using an assortative block structure with main probabilities p1 = 〈k〉K /N and secondary probabilities p2 = 0.1 p1.
Thus the latent variablesΘ = (u, v, w, η) are fixed. Then, edges are drawn according to the generative model described
above. We generate 10 different samples for each value of η.

For sake of completeness, we also analysed synthetic networks generated with the model proposed in Safdari et al.
[22] obtaining similar results and same conclusions. We do not report them here for sake of brevity.

C. Results on synthetic data

1. Edge prediction

We test edge prediction by using a 5-fold cross-validation routine: we divide the dataset into five equal-size groups
and train the model on four of them (training set) to infer the parameters; the fifth group is then used as test set
to evaluate the existence of edges Aij (in this set). By varying which group we use as test set, we get five trials per
realization and the final score is the average over these. To divide the dataset into five folds, we use a symmetric
mask, i.e., in each trial the training set contains the 80% of the possible entries (Aij , Aji).
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In the manuscript we show the performance of the models in edge prediction when using the marginal and conditional
expected values, E [Aij ] and E [Aij |Aji] respectively. Here, we measure the AUC that is equivalent to the area under
the receiver-operating characteristic (ROC) curve [11].

In addition to this results, we can exploit the full joint distribution of our model to answer questions like what
is the probability of jointly observing both edges i → j and j → i? This is equivalent to assign a value to the pair
(Aij , Aji) from the set {(0, 0), (0, 1), (1, 0), (1, 1)}, that translates the edge prediction task into a classification problem.
However, this problem becomes trivial if the model predicts all entries equal to (0, 0): in this case we will get high
performance just because of the high sparsity of the data. For this reason, we compute the accuracy only for entries
in the test set that have at least one edge. For those, we predict the label associated to the highest probability among
[p01, p10, p11], where these are computed by using Equations (S1)–(S3) with the inferred parameters. We then compute
the accuracy between true and predicted labels, where a value equal to 1 means perfect recovery. As baselines, we use
a uniform random probability over the number of possible labels in the training set (RP), and the maximum relative
frequency of the label appearing more often in the training set (MRF). The results are shown in Figure S1, where we
can observe a V-shape. Reciprocity equal to zero (r = 0) means the networks have no reciprocated edges, and higher
its value higher the frequency of the label (1, 1). Thus, in the regime 0 ≤ r ≤ 0.5 the performance decreases because
the problem becomes more difficult by reaching the point where labels have similar relative frequencies (MRF ≈ RP
when r = 0.5). In this scenario, JointCRep outperforms the baselines with a bigger gap as the reciprocity increases.
When r > 0.5 the problem becomes easier due to the increasing proportion of the label (1, 1). Here, predicting all
entries equal to (1, 1) results in higher performance (MRF). However, this is another trivial situation that should be
ignored when analyzing the performance in edge prediction tasks.
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FIG. S1: Edge prediction with joint distributions in synthetic networks. Synthetic networks with N = 1000 nodes,
K = 2 overlapping communities, 〈k〉 = 20 average degree, and different values of reciprocity r. Results are averages
and standard deviations over 10 synthetic networks and over 5-folds of cross-validation test sets. Edge prediction
performance is measured with accuracy, and as baselines we consider the uniform random probability (RP) and the
maximum relative frequency (MRF).

2. Reproducing network topological properties

Figure S2 shows the performance of each model in reproducing the average degree in sampled networks. While
JointCRep and MT recover this feature despite the different values of reciprocity, CRep produces samples with a lower
average degree than the one given in input as r increases. This happens because, in high reciprocity settings, CRep
produces sampled networks with fewer edges but higher weights. Hence, while the average degree decreases, the
weighted average degree better reflects the input feature (not shown here).
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FIG. S2: Average degree in sampled synthetic networks. Synthetic networks with N = 1000 nodes, K = 2
overlapping communities, 〈k〉 = 20 average degree, and different values of reciprocity r. Results are empirical
averages and standard deviations over 50 samples of 10 independent synthetic networks (five samples per input
network). We measure the average degree and the dark red markers indicate the average on 10 input networks.
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