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In classification tasks, it is crucial to meaningfully exploit information contained in data. Here, we
propose a physics-inspired dynamical system that adapts Optimal Transport principles to effectively
leverage color distributions of images. Our dynamics regulates immiscible fluxes of colors traveling
on a network built from images. Instead of aggregating colors together, it treats them as different
commodities that interact with a shared capacity on edges. Our method outperforms competitor
algorithms on image classification tasks in datasets where color information matters.

Optimal Transport (OT) is a powerful method for com-
puting the distance between two data distributions. This
problem has a cross-disciplinary domain of applications,
ranging from logistic and route optimization [1–3], to bi-
ology [4, 5] and computer vision [6–9], among others.
Within this broad variety of problems, OT is largely
utilized in machine learning [10], and deployed for solv-
ing classification tasks, where the goal is to optimally
match discrete distributions that are typically learned
from data. Relevant usage examples are also found in
multiple fields of physics, as in protein fold recognition
[11], stochastic thermodynamics [12], routing in multi-
layer networks [13] or general relativity [14].

A prominent application is image classification [15–20],
where the goal is to measure the similarity between two
images. OT solves this problem by interpreting image
pairs as two discrete distributions and then assesses their
similarity via the Wasserstein (W1) distance [21], a mea-
sure obtained by minimizing the cost needed to transform
one distribution into the other.

Much research effort has been put in speeding up al-
gorithms to calculate this quantity [11, 16, 17, 22, 23].
However, all these methods overlook the potential of us-
ing effectively image colors. As a result, practitioners
have access to increasingly efficient algorithms, but that
do not necessarily improve accuracy in predictions, as we
lack a framework that fully exploits the richness of the in-
put information. Colored images, originally encoded into
three-dimensional histograms—with one dimension per
color channel—are often compressed into lower dimen-
sional data using feature extraction algorithms [9, 20].
Here, we propose a different approach that maps the
three distinct color histograms to multicommodity flows
transported in a network built using images’ pixels. We
combine recent developments of OT with physics insights
of capacitated network models [1, 5, 24–27] to treat colors
as mass of different types that flows through the edges
of a network. Different flows are coupled together with
a shared conductivity, and minimize a unique cost func-
tion. This setup is reminiscent of the distinction between
modeling the flow of one substance, e.g. water, and mod-
eling flows of multiple substances that do not mix, e.g.
immiscible fluids, that share the same network infrastruc-
ture.

By virtue of this multicommodity treatment we achieve
stronger classification performance than state-of-the-art
OT-based algorithms in real datasets where color infor-
mation matters.
Unicommodity Optimal Transport.—Given two m,n-

dimensional probability vectors g, h, and a positive-
valued ground cost matrix C, the goal of a standard—
unicommodity—OT problem is to find an Optimal Trans-
port path P ? satisfying the conservation constraints∑
j Pij = gi ∀i and

∑
i Pij = hj ∀j, while minimizing

J(g, h) =
∑
ij PijCij . Entries P ?ij can be interpreted as

the mass transported from gi to hj when paying a cost
Cij , while J?, i.e. J evaluated at P ?, encodes the mini-
mum effort needed to transport g to h. Notably, if all en-
tries Cij are distances between i and j, then J? is theW1

distance between g and h (see [21] for a standard proof
and [9] for derivations focusing on the discrete case).
Multicommodity Optimal Transport.—We adapt uni-

commodity OT to account for M different histograms
that are coupled together. In our application, this
amounts to considering M = 3 color channels, the com-
modities, indexed with a = 1, . . . ,M . We define ga, ha
as m,n-dimensional probability vectors of mass of type
a. More compactly, we define the matrix G with entries
Gia = gai (resp. H for h), each containing the intensity
of color channel a in pixel i of the first (resp. second) im-
age. Conservation of mass must hold for each commodity
index a, i.e.

∑
i g
a
i =

∑
j h

a
j .

Moreover, we define the set Π(G,H), containing (m×
n × M)-dimensional tensors P with entries P aij , being
transport paths between ga and ha. We enforce inter-
action between transport paths for different commodi-
ties by introducing a shared cost C. This allows us to
define the multicommodity transport cost JΓ(G,H) =∑
ij ||Pij ||Γ2Cij , where ||Pij ||2 is the 2-norm of the vector

Pij =
(
P 1
ij , . . . , P

M
ij

)
and 0 < Γ < 4/3 is a regularization

parameter. We can thus formulate its corresponding mul-
ticommodity OT problem as that of finding a tensor P ?
solution of:

J?Γ(G,H) = min
P∈Π(G,H)

JΓ(G,H). (1)

Notice that for M = 1 and Γ = 1, we recover the
standard unicommodity OT setup. Our choice of using
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the 2-norm over a in JΓ is motivated by recent works
[2, 28, 29] where it is shown that Eq. (1) corresponds to
Joule’s law, while transport paths follow Kirchhoff’s law
enforcing conservation of mass.

Optimal Transport network on images.—To adapt this
formalism to images, we introduce an auxiliary bipartite
network Km,n(V1, V2, E12), being the first building block
of the network where the OT problem with input matri-
ces G,H—representing two images—is solved. The sets
of nodes V1, V2 are the pixels of Image 1 and Image 2,
respectively. The set of edges E12 contains a subset of all
pixels’ pairs between the two images, as detailed below.

We consider the cost of an edge (i, j) as Cij(θ, τ) =
min{(1−θ) ||vi−vj ||2 +θ ||Gi−Hj ||1, τ}, where the vec-
tor vi = (xi, yi) contains the coordinates of pixel i of
Image 1 (similarly vj for Image 2), 0 ≤ θ ≤ 1 is a convex
combination weight, and τ > 0 is a trimming threshold.
This definition of cost interpolates between the Euclidean
distance between pixels and the difference in their color
intensities, following the intuition in [9, 20]. The relative
influence of these two contributions is tuned by θ, an hy-
perparameter given in input.
The parameter τ is introduced following [19, 20], with the
scope of removing all edges with cost Cij(θ, τ) = τ and
substituting them withm+n transshipment edges e ∈ E′,
each of cost τ/2, connected to one unique auxiliary ver-
tex u1. Thresholding the cost decreases significantly the
computational complexity of OT, making it linear with
the number of nodes |V1| + |V2| + 2 = m + n + 2 (see
Supplemental Material [30]).
OT is solved by injecting in nodes i ∈ V1 the color mass
specified by G and extracting it in nodes j ∈ V2, as speci-
fied by H. This is done by transporting mass using either
(i) an edge in E12 or (ii) a transshipment one in E′.

Furthermore, we relax conservation of mass by allow-
ing

∑
iGia 6=

∑
j Hja, and assigning mass contributions

ma =
∑
j Hja −

∑
iGia to a second auxiliary node, u2.

We connect it to the network with n additional trans-
shipment edges e ∈ E′, each penalizing the total cost by
c = maxij Cij/2. This construction improves classifica-
tion when the histograms’ total mass largely differs [19].
Intuitively, this can happen when comparing “darker” im-
ages against “brighter” ones. More precisely, when entries
of ga and ha are further apart in the RGB color space.

Overall we obtain a network K with nodes V =
V1 ∪ V2 ∪ {u1, u2} and edges E = E12 ∪E′, i.e. the orig-
inal bipartite graph Km,n, together with the auxiliary
transshipment links and nodes. Note that in its entirety
the system is isolated, i.e. the total mass is conserved,
see Fig. 1 for a representation of the OT setup and the
Supplemental Material [30] for a detailed description.

Optimizing immiscible color flows: the dynamics.—We
solve the OT problem by proposing the following ODEs

K

C

G H

Image 1 Image 2

{ {
𝜏/2

E12

c

xi

yi i E'

u1

u2

FIG. 1. Network for multicommodity OT. Images are RGB
matrices, G and H, that flow into K. The graph is made of
n + m + 2 nodes, one per pixel, and two auxiliary vertices.
Edges in E12 (gray) are trimmed with τ (Cij is highlighted in
red if larger than τ). Transshipment, and auxiliary links to
relax mass conservation, in E′ are in brown and magenta.

controlling mass transportation:∑
j∈∂i

Lij [x]φaj = Sai ∀i ∈ V, a = 1, . . . ,M

(2)

dxe
dt

= xβe
||φi − φj ||22

C2
e

− xe ∀e = (i, j) ∈ E,

(3)

which constitute the pivotal equations of our model. Here
we introduce the shared conductivities xe ≥ 0, and define
Sai = Gia − Hia, taking values Sau1

= 0 and Sau2
= ma.

With Lij [x] =
∑
e(xe/Ce)BieBje we denote the weighted

Laplacian of K, where B is its signed incidence matrix;
∂i is the neighborhood of node i. Lastly, φai are scalar po-
tentials acting on nodes, for a given commodity a. Least-
square solutions of Eq. (2) are φai [x] =

∑
j L
†
ij [x]Sai ,

where † denotes the Moore-Penrose inverse.
The feedback mechanism of Eq. (3) allows to allocate

multicommodity fluxes of color of type a (i.e. trans-
port paths) on edges e = (i, j) by defining P ae (t) =
xe(t)(φ

a
i [x(t)] − φaj [x(t)])/Ce. Crucially, this allocation

is governed by one unique conductivity for all commodi-
ties, whose dynamics depends on the 2-norm of differ-
ences of potentials over a. Instead, transport paths are
commodity-dependent because of the potentials φ. The
critical exponent 0 < β < 2 [Γ = 2(2 − β)/(3 − β)] ag-
gregates paths with a principle of economy of scale if
1 < β < 2. It dilutes them along the network otherwise,
with the goal of reducing traffic congestion.
In the case of only one commodity (M = 1), variants of
this dynamics have been used to model transport opti-
mization in various physical systems [1, 5, 25–27].

The salient result of this construction is that asymp-
totic trajectories of Eqs. (2)-(3) are equivalent to mini-
mizers of Eq. (1), i.e. limt→+∞ P (t) = P ? (see Supple-
mental Material [30] for derivations following [28, 29]).
Therefore, numerically integrating our dynamics solves
the multicommodity OT problem.
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Classification task.—We provide empirical evidence
that our multicommodity dynamics outperforms compet-
ing OT algorithms on classification tasks. Given two im-
ages, we use the OT optimal cost as a measure of similar-
ity between them, and perform supervised classification
with a k-nearest neighbor (k-NN) classifier.

We compare classification accuracy of our model
against: (i) Sinkhorn algorithm [16, 31]; (ii) a unicom-
modity dynamics executed on grayscale images, i.e., with
color information compressed in one single commodity
(M = 1); (iii) Sinkhorn algorithm on grayscale images.
All methods are tested on two datasets: the Jena Flow-
ers 30 Dataset (JF30) [32], and the Fruit Dataset (FD)
of [33]. The first consists of 1,479 images of 30 wild-
flowering angiosperms (flowers). Flowers are labelled
with their species, inferring them is the goal of the classi-
fication task. The second dataset contains 15 fruit types
and 163 images, here we want to classify fruit types. Pa-
rameters of the OT problem setup (θ and τ), as well
as regularization ones (β and ε, which enforces the en-
tropic barrier in Sinkhorn algorithm [16]), have been
cross-validated for both datasets. All methods are then
tested in their optimal configurations (see Supplemental
Material [30] for implementation details).

Classification results are shown in Table I. In all cases,
leveraging colors leads to higher accuracy (about 8%
increase) with respect to classification performed using
grayscale images. This signals that, in the datasets un-
der consideration, color information is a relevant feature
for differentiating image samples. Remarkably, we get
a similar increase in performance (about 7-8%) on both
colored datasets, when comparing our multicommodity
dynamics against Sinkhorn. As the two algorithms use
the same (colored) input, we can attribute this increment
to an effective usage of the color that our approach is ca-

Algorithm Hyperparameters Class. accuracy
θ τ β ε k [%] (↑)

JF
30

Multicommodity 0.25 0.125 1 — 1 62.2
Sinkhorn RGB 0.25 0.05 — 100 1 58.4
Sinkhorn GS 0.25 0.05 — 500 1 54.3
Unicommodity 0.25 0.125 1.25 — 1 53.6

F
D

Multicommodity 0 0.04 1.5 — 2 75.0
Sinkhorn RGB 0.5 0.06 — 750 1 69.6
Unicommodity 0 0.06 1.5 — 5 64.3
Sinkhorn GS 0.25 0.06 — 500 4 60.7

TABLE I. Classification task results. With Multicommod-
ity, Sinkhorn RGB, Unicommodity and Sinkhorn GS we label
methods on colored images (first two), and grayscale ones
(second two). Optimal parameters in the central columns
are selected with a 4-fold cross-validation; k is the number of
nearest neighbors used in the classifier. The rightmost col-
umn shows the fraction (in percentage) of correctly classified
images. Results are ordered by performance, in bold we high-
light the best ones.

pable of.
In addition, analyzing results in more detail, we first

observe that on JF30 all methods perform best when θ =
0.25, i.e., 25% percent of the information used to build
C comes from colors. This trend does not recur on FD,
where both dynamics favor θ = 0 (Euclidean C). Hence,
our model is able to leverage color information via the
multicommodity OT dynamical formulation.

Second, on JF30 both dynamics perform best with
τ = 0.125, contrarily to Sinkhorn-based methods that
prefer τ = 0.05. Thus, Sinkhorn’s classification accu-
racy is negatively affected both by low τ—many edges
of the transport network are cut, and by τ large—noisy
color information is used to build C. We do not observe
this behavior in our model, where trimming less edges
is advantageous. All optimal values of τ are lower on
FD, since color distributions of this dataset are naturally
light-tailed (See Supplemental Material [30]).

Lastly, we investigate the interplay between θ and β.
We notice that θ = 0 (FD) corresponds to higher β = 1.5.
Instead, for larger θ = 0.25 (JF30), the model prefers
lower β (β = 1, 1.25 for the multicommodity and the uni-
commodity dynamics, respectively). In the former case
(θ = 0, Cij is the Euclidean distance), the cost is equal
to zero for pixels with the same locations. Thus, consol-
idation of transport paths—large β—is favored on cheap
links. Instead, increasing θ leads to more edges with com-
parable costs as colors distribute smoothly over images.
In this second scenario, better performance is achieved
with distributed transport paths, i.e. lower β (See Sup-
plemental Material [30]).
The impact of colors.—To further assess the impor-

tance of leveraging color information we conduct three
different experiments.

In Experiment 1, we focus on a single image taken from
the test set of FD, and we plot the landscape of optimal
costs J?Γ when comparing it against the train set. Results
for the multicommodity dynamics (M = 3) and for the
unicommodity dynamics (M = 1) on grayscale images
are in Fig. 2. Here, we highlight the 5 lowest values of
the cost, and mark them in green if they correspond to
correctly classified train samples, and in red otherwise.
Both dynamics classify correctly 3 samples out if 5. How-
ever, the multicommodity dynamics clusters them at the
bottom of the cost landscape, thus improving classifica-
tion.

We further mark this tendency with Experiment 2.
Here, we perform classification on a subset of FD com-
posed of images belonging to three classes: red apples,
orange apricots, yellow melons. These fruits have similar
shapes, so their color plays a crucial role in the classifica-
tion process. The test set is made of three random sam-
ples each drawn from one of these classes (top row of the
rightmost panel), the train set contains the remaining in-
stances of the classes. Results are in Fig. 2. First, we plot
the cost landscape J?Γ for the train set, and draw in red,
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FIG. 2. Evaluating the effect of colors. Experiment 1: Top black framed image is that to be classified. Predictions given by
the multicommodity and the unicommodity dynamics (those with lower J?

Γ) are shown in the right side of the panel, and are
displayed in sorted fashion from worst to best (from bottom to top). Experiment 2: Top right samples are the three test images
to be classified. Middle and bottom rows are predictions given by the two dynamics. Markers, backgrounds and test images
shared color code: red for apples, orange for apricots, yellow for melons. In both panels: green circles and red crosses are used
to highlight classified and misclassified images, respectively. All algorithms are executed with their optimal configurations in
Table I.

orange, and yellow values of J?Γ correspondent to samples
which are compared against the test apple, apricot, and
melon, respectively. We also sort the train samples so
that they are grouped in three regions (highlighted by
the background color in Fig. 2), correspondent to train
melons, apricots, and apples. With this construction, if
the minimum cost among the yellow markers falls in the
yellow region, it will correspond to a correctly classified
sample (resp. for orange and red). We further mark the
yellow, orange, and red minima in green if test and train
labels correspond, i.e. markers’ and backround’s colors
are the same, and in red otherwise. Train and test sam-
ples are also in Fig. 2. The multicommodity dynamics
correctly labels each test image. In contrast, the uni-
commodity dynamics fails at this task, labeling a melon
as an apricot.

Lastly, in Experiment 3 we consider a setup where
fruits’ shapes crucially influence classification. In par-
ticular, we select as test sample a cherry, whose form is
arguably clearly distinguishable from that of many other
fruits in the dataset. One can expect that comparing it
against the train set of FD will result in having both uni-
commodity and multicommodity dynamics able to assign
low J?Γ to train cherries, and higher costs to other fruits.
This intuition is confirmed by results in Fig. 3. Here train
cherries (in green) strongly cluster in the lower portion
of the cost landscape, whereas all the other fruits have
higher costs. In Fig. 3 we also plot some of the correctly
classified train samples.

These results suggest that when color information is
negligible compared to another type of information (e.g.
shape), unicommodity and multicommodity formulations
perform similarly. In light of this, we reinforce the claim
that our multicommodity formulation can boost classifi-
cation in contexts where color information does matter.
Conclusions.—We propose a multicommodity OT for-

mulation for effectively using the color information to im-
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FIG. 3. Evaluating the importance of colors: when shapes
matter most. Experiment 3: Top black framed image is that
to be classified. The best 3 (out of 10) predictions returned
by the two dynamics are shown on the right. We mark with
green circles training samples belonging to the same class of
the test image. All algorithms are executed with their optimal
configurations in Table I.

prove image classification. We model colors as immisci-
ble flows traveling on a capacitated network, and propose
equations for its dynamics, with the goal of optimizing
flow distribution on edges. Color flows are regulated by
a shared conductivity, and minimize a unique cost func-
tion. Thresholding the ground cost as in [19, 20] makes
our model computationally efficient.

We outperform Sinkhorn algorithm on two datasets
where color matters. Our model also assigns lower cost to
correctly classified images than its unicommodity coun-
terpart, and it is more robust on datasets where items
have similar shape, and thus color information is dis-
tinctly relevant. We note that, for some datasets, color
information may not matter, as when another type of in-
formation (e.g. shape) has stronger discriminative power.
However, while we focused here on different color chan-
nels as the different commodities in our formulation, the
ideas of this paper can be extended to scenarios where
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other relevant information can be distinguished into dif-
ferent types.

To facilitate practitioners using our algorithms, we
make our code publicly available [34].
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CONSTRUCTION OF THE NETWORK

Here, we extensively explain the procedure used for constructing the transport network K. All the essential steps
are schematically drawn in Fig. S1, and are as follows.

Step 1. Initially, a pair of images (Image 1, Image 2), is given as a couple of multidimensional arrays of dimensions
(wi, hi,M = 3), with i = 1, 2. We denote with w images’ widths and with h their heights. The third dimension
has size M = 3, and corresponds to the three RGB color channels. The color channels are flattened to obtain
the tensors G and H, the first for Image 1, and the second for Image 2. In detail, each channel is vectorized
to have dimension m × 1, with m = w1 · h1, for ga (resp. n × 1, with n = w2 · h2, for ha), which are inflows
and outflows of our multicommodity dynamics. In this way, the tensors G and H, which are obtained stacking
ga and ha, have size m ×M and n ×M . Entries of G and H are in standard RGB encoding, hence they are
integers ranging from 0 to 255.

To obtain the transport network K, we first generate a complete bipartite graph between m + n = |V1| + |V2|
nodes, the first m = |V1| are the pixels of Image 1, and the other n = |V2| are those of Image 2. We then assign
a cost to each edge of this graph using both information given by pixels’ locations, and by images’ colors. In
particular, we define:

Ce(θ) = (1− θ)Ye + θXe ∀e = (i, j) (S1)

Ye=(i,j) = ||vi − vj ||2 =
√

(xi − xj)2 + (yi − yj)2 (S2)

Xe=(i,j) = ||Gi −Hj ||1 =

M=3∑
a=1

|Gia −Hja| (S3)

for each i pixel of Image 1, and j pixel of Image 2. Terms Ye in Eq. (S2) contain the Euclidean distance between
any pair of pixels, whose horizontal and vertical coordinates are stored in vectors v = (x, y). Instead, Xe

contributes with colors to edges’ costs. We model the effect of colors taking, in Eq. (S3), the 1-norm between
arrays Gi, Hj , containing the RGB intensities in i (pixel of Image 1) and j (pixel of Image 2). Both Xe and Ye
have been opportunely rescaled in the range [0, 1]. Lastly, we use the scalar parameter 0 ≤ θ ≤ 1 to weigh Ye
and Xe in a convex combination, in Eq. (S1).

Step 2. Once Step 1 is complete, and a cost Ce is assigned to each edge of the complete bipartite graph between
the two images, we implement a trimming procedure similar to that of [19, 20] to cut highly expensive links.
In particular, we trim all edges e that have cost Ce > τ , where τ > 0 is a threshold fixed a priori. The links
between V1 and V2 that do not get cut make up the set E12. We then add a first transshipment node, u1, to
the network, and connect it with m+ n links to the sets V1 and V2. Each transshipment link is assigned a fixed
cost Ce = τ/2. This implies that one needs to pay a total cost of τ to transport mass from a node of Image 1
(in V1) to one of Image 2 (in V2), when traversing transshipment links.

There are several benefits in thresholding for the cost: (i) from a purely intuitive standpoint, humans perceive
distances as saturated distances [35]; (ii) many natural color distributions are noisy and heavy-tailed, thus
thresholding permits to assign a fixed cost to outliars; (iii) thresholded distances induce a W1 distance between
distributions in standard unicommodity OT problems [20]. More practically, thresholding improves accuracy
and speed of OT [20] (see also the Computational Cost Section in this SM).

Step 3. The last step required to obtain K is the introduction of a second auxiliary node, u2, together with its edges,
to relax mass balance. In detail, in a standard OT setting

∑
iGia =

∑
j Hja = Λa > 0 holds ∀a = 1, . . . ,M ,

i.e., two histograms to be transported belong to the same simplex of mass Λa > 0. We relax this constraint
permitting

∑
iGia 6=

∑
j Hja and penalizing Eq. (1). Particularly, we use a similar relaxation of that in [20],
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which we generalize to the multicommodity setup:

J?Γ(G,H) = min
P∈Π(G,H)

JΓ(G,H)
Relaxation−→ min

P

{
JΓ(G,H) + α

∑
a

∣∣∣∑j Hja −
∑
iGia

∣∣∣maxe∈E12 Ce

}
. (S4)

The intuition of Eq. (S4) is that the OT problem is penalized proportionally to the net difference between the
inflowing and the outflowing mass. Hence, two images whose colors strongly differ return a higher cost and, in
a supervised classification task, are less likely to be assigned the same label. We fix α = 1/2 as in [19].

This penalization can be translated to the transport network with the addition of n links, costing c =
αmaxe∈E12 Ce = maxe∈E12 Ce/2, connected to u2. The excess of mass ma =

∑
j Hja −

∑
iGia given by

each commodity is injected u2 to guarantee that the whole system is isolated. With this expedient one recovers
exactly the relaxed OT formulation in Eq. (S4). In fact, all the transport paths that not not flow into one of
the n nodes of Image 2 penalize the cost by traversing the edges connected to u2. From conservation of mass
one can see that these transport paths satisfy P aju2

= Hja− (1/n)
∑
iGia, ∀j ∈ V2. Thus, summing over a and j

returns exactly
∑
aj P

a
ju2

= ||
∑
j Hj −

∑
iGi||1, with the 1-norm taken over the commodities. This is precisely

the penalization we introduced in Eq. (S4).
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FIG. S1. Detailed construction of transport networks. Step 1: conversion of colored images to tensors and construction of the
first complete bipartite graph. Step 2: trimming of expensive edges and addition of the transshipment node, u1, with its links
(in brown). Step 3: relaxation of mass balance with the addition of the second auxiliary node, u2, together with its links (in
magenta).

EQUIVALENCE BETWEEN MULTICOMMODITY DYNAMICS AND OT SETUP

With the following derivations (similar to [28, 29]), we show that asymptotic solutions of Eqs. (2)-(3) are equivalent
to minimizers of Eq. (1). This implies that by solving the multicommodity dynamics we find a solution of the
multicommodity OT minimization problem. More practically, for a given pair of images, running a numerical scheme
on Eqs. (2)-(3) allows us to compute limt→∞ P (t) = P ?, hence J?Γ = JΓ|P=P? , and use the latter as a measure of
similarity between them.

More in detail, we first demonstrate the equivalence between stationary solutions of the multicommodity dynamics
and minimizers of the multicommodity OT problem introducing a second accessory minimization problem. Stationary
solutions are proven to be asymptotes of Eq. (3) only afterwards, with the introduction of a Lyapunov functional for
the multicommodity dynamics.

Stationary solutions of the multicomodity dynamics and OT minimizers

Initially, we observe that stationary solutions of the multicommodity dynamics satisfy the relation

xe = ||Pe||2/(1+γ)
2 ∀e ∈ E, (S5)
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that one can derive setting the left hand side of Eq. (3) to zero, defining P ae = xe(φ
a
i − φaj )/Ce for e = (i, j), and

γ = 2 − β. We recover an scaling identical to Eq. (S5) introducing the following auxiliary constrained minimization
problem:

min
x,P

{
1

2

∑
e

Ce
xe
||Pe||22 +

1

2γ

∑
e

Cex
γ
e

}
(S6)

s.t.
∑
e

BieP
a
e = Sai ∀i ∈ V, a = 1, . . . ,M. (S7)

In fact, differentiating with respect to xe the objective function in Eq. (S6), and setting the derivatives to zero, yields

−Ce
x2
e

||Pe||22 + Cex
γ−1
e

!
= 0 −→ xe = ||Pe||2/(1+γ)

2 ∀e ∈ E. (S8)

Noticeably, Eq. (S6) admits a straightforward physical interpretation. In fact, the first term J = (1/2)
∑
e Ce||Pe||22/xe

is Joule’s first law. Particularly, transport paths can be thought of as fluxes of mass transported through the edges of
a capacitated network with resistances re = Ce/xe. While the second term, Wγ = (1/2γ)

∑
e Cex

γ
e , is the cost needed

to build the network infrastructure. The constraints in Eq. (S7)—identical to Eq. (2)—are equivalent to Kirchhoff’s
law, enforcing conservation of mass.

Most remarkably, the scaling of Eq. (S8) can be also recasted in Eq. (S6) to find that JΓ = J + Wγ (neglecting
multiplicative constants). This connects the multicommodity dynamics with the objective function of Eq. (1). In
detail,

J +Wγ =
1

2

∑
e

Ce
xe
||Pe||22 +

1

2γ

∑
e

Cex
γ
e (S9)

Eq. (S8)
=

1

2

∑
e

Ce||Pe||2γ/(1+γ)
2 +

1

2γ

∑
e

Ce||Pe||2γ/(1+γ)
2 (S10)

Γ=2γ/(1+γ)
=

1

Γ

∑
e

Ce||Pe||Γ2 (S11)

=
1

Γ
JΓ(G,H). (S12)

To complete the mapping between the multicommodity dynamics and the minization setup, we show that the space
of transport tensors Π(G,H) is exactly the same space defined by Eq. (S7). This can be seen with the following chain
of equalities: ∑

k

P aik −
∑
j

P aji = Gai −Ha
i ∀i ∈ V, a = 1, . . . ,M (S13)

∑
k

P ae=(i,k) −
∑
j

P ae=(j,i) = Sai ∀i ∈ V, a = 1, . . . ,M (S14)

∑
e

BieP
a
e = Sai ∀i ∈ V, a = 1, . . . ,M. (S15)

Here we take the difference between the OT constraints of Π(G,H) in Eq. (S13), we then use the definition of S in
Eq. (S14), and compact the plus and minus signs using the signed incidence matrix B in Eq. (S15). This allows us to
recover Kirchhoff’s law as formulated in Eq. (S7) and Eq. (2).

Multicommodity dynamics asymptotes: Lyapunov functional

We complete our discussion introducing the Lyapunov functional for Eq. (3) proposed in [28, 29]. The functional
reads:

Lγ [x] =
1

2

∑
ai

φai [x]Sai +
1

2γ

∑
e

Cex
γ
e , (S16)
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and it is a multicommodity generalization of that originally introduced in [36]. This is a well-defined Lyapunov
functional for the multicommodity dynamics, in fact, along a curve x(t) solution of Eq. (3),

dLγ [x(t)]

dt
≤ 0. (S17)

With the equality satisfied if and only if x(t) is a stationary point of Eq. (3). This can be shown as follows. We claim
that

∂Lγ
∂xe

=
Ce
2

(
xγ−1
e − ||φi − φj ||

2
2

C2
e

)
∀e = (i, j) ∈ E. (S18)

This equality can be retrieved differentiating both sides of Eq. (2) by xe, thus obtaining∑
j

∂Lij
∂xe

φaj +
∑
j

Lij
∂φaj
∂xe

= 0 ∀i ∈ V, e ∈ E, a = 1, . . . ,M, (S19)

∑
j

Lij
∂φaj
∂xe

= −
∑
j

Bje(1/Ce)Bieφ
a
j ∀i ∈ V, e ∈ E, a = 1, . . . ,M. (S20)

Then, multiplying Eq. (S20) by φai and summing over i one gets∑
ij

φaiLij
∂φaj
∂xe

= −
∑
ij

φaiBie(1/Ce)Bjeφ
a
j ∀e ∈ E, a = 1, . . . ,M, (S21)

further summing over a yields

∂

∂xe

∑
aj

Saj φ
a
j

 = −Ce
||φi − φj ||22

C2
e

∀e = (i, j) ∈ E, (S22)

where in the left hand side of Eq. (S22) we used Eq. (2). From Eq. (S22) the equality in Eq. (S18) follows immediately.
Now, thanks to Eq. (S18) we can prove that the Lie derivative of the functional is less than or equal to zero. In fact,

dLγ
dt

=
∑
e

∂Lγ
∂xe

dxe
dt

(S23)

Eq. (S18)
=

∑
e

Ce
2

(
xγ−1
e − ||φi − φj ||

2
2

C2
e

)
dxe
dt

(S24)

Eq. (3),γ=2−β
= −

∑
e

Ce
2
x2−γ
e

(
xγ−1
e − ||φi − φj ||

2
2

C2
e

)2

≤ 0. (S25)

With the equality in Eq. (S25) that is recovered if and only if (i) xe = 0, or (ii) the scaling in Eq. (S8) holds.
Finally, we show that the Lyapunov is identical to the total sum of dissipation and transport cost, i.e., Lγ = J+Wγ .

This can be done multiplying both sides of Eq. (2) by φai and then summing over i and a, namely∑
aiej

φaiBie(xe/Ce)Bjeφ
a
j =

∑
ai

φai S
a
i (S26)

∑
e

Ce
xe
||Pe||22 =

∑
ai

φai S
a
i (S27)

where we used P ae = xe(φ
a
i − φaj )/Ce, for e = (i, j). This allows us to conclude.

In summary, we showed that the multicommodity dynamics admits a well-defined Lyapunov functional, which
is equivalent to the sum of a dissipation and an infrastructure cost. These two contributions, which are jointly
minimized by Eq. (3), when evaluated along their minimizers correspond to the multicommodity OT cost JΓ of
Eq. (1). Introducing the Lyapunov functional is crucial to formally show that asymptotics of the dynamics are
equivalent to minimizers of the cost, namely limt→∞ P (t) = P ?.

Lastly, we remark the effect of γ (resp. β) on the minimization problem. In the setting where γ > 1 (β < 1) the
functional Lγ is convex, with one unique minimizer. For γ < 1 (β > 1) the functional landscape becomes rugged and
strongly non-convex, with multiple minimizers each correspondent to a local minima of the cost. Hence, in this second
scenario, running Eq. (3) permits to converge in a stationary point, which however may not be its global minimum.
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CROSS-VALIDATION: FLOWERS DATASET

We perform a 4-fold cross validation on both parameters used for the construction of the ground cost, θ and τ , and
on algorithms’ regularization parameters, β and ε. We briefly summarize it in this section.

The JF30 Dataset [32] is made of 1,479 elements, divided in 30 classes. First, we separate it into two subsets:
train and test, with classes’ frequencies being the same in these subsets as in the entire dataset. To cross-validate
our methods, we further separate the train set into 4 folds of equal size, each to be used in turn as a validation
set. More in detail, each experiment is executed fixing the validation fold and an image belonging to it, then, the
Optimal Transport costs J?Γ between such image all the other images in the train set—made of the other three folds—is
calculated. This procedure is repeated for all images in the validation set, and swapping each of the 4 train folds as
validation set. We use a k-nearest neighbors classifier over J?Γ to assign to an image in the validation set its label, that
is, for each validation image we consider the k train samples with lowest J?Γ, and label the validation sample with the
most frequent class among these k. This allows us to calculate the classification accuracy of a given fold, and then
to average the accuracy over the 4 permutations of the validation and train set. The total amount of experiments we
ran in order to cross-validate the model is approximately 50,000.

Results are shown in Fig. S2 and Fig. S3. These depict the average accuracy of: (a) the multicommodity
(M = 3) dynamics; (b) the unicommodity (M = 1) dynamics, both for β ∈ {0.5, 0.75, 1, 1.25, 1.5}; (c) Sinkhorn
algorithm on colored images (Sinkhorn RGB); and (d) Sinkhorn algorithm on grayscale images (Sinkhorn GS), for
ε ∈ {100, 250, 500, 750, 1000, 2500}. Letters in parentheses refer to those of Fig. S2 and Fig. S3. The regulariza-
tion parameters are validated together with τ ∈ {0.1, 0.125} and θ ∈ {0, 0.25, 0.5, 0.75}. Both multicommodity and
unicommodity dynamics are have initial conditions xe(0) = 1,∀e ∈ E.

All figures displayed in Fig. S2 and Fig. S3 correspond to highest accuracies returned by the k-NN classifier, with
k = 1, 2, . . . , 20. Observing the results, one can see that best performances are attained at (τ, θ, β) = (0.125, 0.25, 1)
for the multicommodity dynamics, and at (τ, θ, β) = (0.125, 0.25, 1.25) for the unicommodity dynamics.

Noticeably, the accuracy monotonically increases (resp. decreases) with β for a fixed value of θ, namely θ = 0 (resp.
θ = 0.25). This can be addressed to the fact that, when no color information is taken into account in the construction
of the ground metric (θ = 0), it is more advantageous to consolidate transport paths on cheap edges correspondent
to pixels whose positions are close, thus choosing a larger β. On the other hand, introducing colors in C (θ > 0), and
thus creating a more disordered ground cost matrix, favors distributing transport paths on the network (See Model
Interpretability Section in this SM).

Remarkably, τ also has an impact on the classification accuracy of our algorithms: the larger we set its value
to be—thus trimming less edges from the transport network—the more accurate the classification becomes. This
behavior is evidently different for Sinkhorn algorithm, as explained here below.
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FIG. S2. Cross-validation results for τ = 0.1. Figures are accuracy values obtained with the 4-fold cross validation on JF30.
Cells are colored with a darkest-to-brightest palette based on the accuracies. Subplots correspond to: (a) the multicommodity
dynamics, (b) the unicommodity dynamics, (c) Sinkhorn on colored images, and (d) Sinkhorn on grayscale images.

Cross-validation of Sinkhorn algorithm is taken a step further. Motivated by the classification accuracy drop
observed in Fig. S2, Fig. S3 [(c), (d)] when enlarging the trimming threshold from τ = 0.1 to τ = 0.125, we fix θ and
ε to the best values in Fig. S2 [(c), (d)], and progressively reduce τ . Results are shown in Fig. S4 (a) for Sinkhorn on
grayscale images, and in Fig. S4 (b) for Sinkhorn on colored images.

Notice that both Sinkhorn GS and Sinkhorn RGB returns bell-shaped curves when changing τ . In particular,
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FIG. S3. Cross-validation results for τ = 0.125. Figures are accuracy values obtained with the 4-fold cross validation on JF30.
Cells are colored with a darkest-to-brightest palette based on the accuracies. Subplots correspond to: (a) the multicommodity
dynamics, (b) the unicommodity dynamics, (c) Sinkhorn on colored images, and (d) Sinkhorn on grayscale images.

low classification accuracy is attained when strongly reducing τ , as well as when the trimming threshold is high
(approximately τ ≥ 0.5). In the first case, many elements of the ground cost matrix are cut, and not enough
information is taken into account into the OT setup to properly perform classification. In the second, too much noise
is included in into C, which also negatively affects classification. More in detail, we observe in Fig. S4 (a, inset), that
Sinkhorn GS performs best when τ = 0.05. For Sinkhorn RGB, i.e. Fig. S4 (b, inset), there is a plateau for all values
of the threshold within the interval [0.05, 0.1].

These observations lead us to the choice of τ = 0.05 for Sinkhorn GS, that we re-cross-validate ranging θ ∈ {0.25, 0.5}
and ε ∈ {100, 250, 500, 750, 1000, 2500}. Looking at the results in Fig. S5, we note that optimal parameters for
Sinkhorn GS are (θ, ε) = (0.25, 500) and (θ, ε) = (0.5, 500), which return identical classification accuracy.

As for Sinkhorn RGB, we fix the trimming threshold at the two ends of the plateau in Fig. S4 (b, inset), τ = 0.05 and
τ = 0.1, and re-cross-validate them with (θ, ε) = (0.25, 100) and (θ, ε) = (0.5, 1000). Here, we choose two disparate
values of θ and ε not being able to observe a clear relation between these two variables in Fig. S2 (c) and Fig. S3 (c).
Namely, ε = 100 (low) and θ = 0.25 perform better for τ = 0.125, in contrast to ε = 1000 (high) and θ = 0.5 for
τ = 0.1. Results are in Table S1, optimal parameters are (θ, τ, ε) = (0.25, 0.05, 100).
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FIG. S4. Sinkohrn’s cross-validation results varying τ . Subplots correspond to: (a) Sinkhorn GS, (b) Sinhorn RGB. In each
subplot, circular markers correspond to the accuracy values of each fold, instead squares and bars represent their average and
standard deviations. In the insets, we refined the grid of τ in an interval of interest, where classification accuracy is peaked.

EXPERIMENTAL DETAILS: FRUITS DATASET

Here, we describe in detail the experimental setup designed for the Fruit Dataset (FD) [33]. FD consists of 163
images of 15 fruit types. We split the whole dataset into train and test sets, each with 70% and 30% of the available
images, respectively. As for the other dataset, classes’ frequencies are the same in these subsets as in the entire
dataset. Given the rather small size of this dataset, we directly perform classification comparing train and test. All
the experiments have been executed with the two best performing parameter configurations of ε and θ, cross-validated
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FIG. S5. Refined cross-validation results Sinkhorn GS and τ = 0.05. Figures are accuracy values obtained with the 4-fold cross
validation on JF30. Cells are colored with a darkest-to-brightest palette based on the accuracies.

Algorithm Hyperparameters Class. accuracy
θ τ ε k [%] (↑)

Sinkhorn RGB

0.25 0.05 100 1 58.4
0.5 0.05 1000 1 53.6
0.25 0.1 100 1 53.2
0.5 0.1 1000 1 49.0

TABLE S1. Refined cross-validation results for Sinkhorn RGB. Rows are sorted (from bottom to top) using the average percent
accuracy obtained with the 4-fold validation (from worst to to best).

on JF30, for Sinkhorn-based methods. These are: (θ, ε) = (0.25, 500), (θ, ε) = (0.5, 500) for Sinkhorn GS [see Fig. S2
(d)], and (θ, ε) = (0.5, 1000), (θ, ε) = (0.5, 750) for Sinkhorn RGB [see Fig. S2 (c)]. For our dynamics, we selected
the two best performing values of β, for θ = 0 and θ = 0.25. Namely, (θ, β) = (0.25, 1), (θ, β) = (0.25, 1.5) for the
multicommodity dynamics [see Fig. S3 (a)], and (θ, β) = (0.25, 1.25), (θ, β) = (0, 1.5) for the unicommodity dynamics
[see Fig. S3 (b)]. The trimming threshold is ranged in τ ∈ {0.04, 0.05, 0.06, 0.07}.

IMAGE PREPROCESSING

The elements of both datasets are processed in the following way. First, each image is coarsened with an average
pooling, the only input needed for this step is the size of the square mask, ms. Its stride is in fact set to stride = ms,
and the padding to pad = 0. All images were conveniently trimmed so that both their widths and heights are divisible
by the pooling mask size. We set ms = 40 for JF30, and ms = 30 for FD. Furthermore, we smooth the images using a
Gaussian filter on each color channel, with standard deviation σ = 0.5.

Moreover, to convert colored images into grayscale ones, which are given as input to Sinkhorn GS and to our
unicommodity dynamics (M = 1), we preproces them as follows. Let (R,G,B), be the three color channels composing
each pixel of a colored image, these are converted into a unique channel (its grayscale counterpart), whose intensity
I is calculated with the weighted sum I = 0.2125R + 0.7154G + 0.0721B. The weights correspond to those used by
cathode-ray tube (CRT) phosphors as they are more suitable to represent human perception of red, green and blue
than equally valued weights [37].

Color distributions of images

As shown in Table I, for the multicommodity and the unicommodity dynamics, optimal values of the trimming
threshold τ are much lower in the Fruit Dataset [33] than in the Jena Flowers 30 Dataset [32]. This can be addressed
to the fact that color distributions of fruits, belonging to the first dataset, are drastically light-tailed compared to
those of flowers in the second dataset. Thus, the cost C is naturally noisier in the latter case, and a larger trimming
is necessary to remove such noise from classification.

Most of the noise in pictures of flowers comes from the background. In fact, while all flowers are photographed in
nature, fruits are depicted on a white background. This can be seen in Fig. S6 (a)-(d). In subplot (a) we show four
images randomly sampled from the Fruit Dataset, in (c) four random samples of the Jena Flowers 30 Dataset. In
(b) and (d) we plot the average color intensity of the RGB channels for 100 random samples belonging to the two
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datasets. Here, the histograms in (b) are relative to the fruits, those in (d) to the flowers. From the plots it can be
clearly seen that the color distributions of Fig. S6 (b) are starkly peaked around (R,G,B) = (255, 255, 255) = white
in standard RGB encoding.
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FIG. S6. Color distributions in the two datasets. Subplots (a), (d) are relative to FD, subplots (c), (d) to JF30. In (a), (c) we
plot four random images drawn from the two datasets. In (b), (d) the average color intensities (properly normalized to sum to
one) of 100 random samples extracted from the two datasets. The plots correspond to red = R, green = G, and blue = B.

SINKHORN BENCHMARKS

In our experiments, we compare the multicommodity and unicommodity dynamics against Sinkhorn algorithm,
popularized by the seminal work of Cuturi [16]. The idea of Sinkhorn is to regularize the standard OT problem by
adding an entropic barrier to the cost function. More in detail, and following the notation adopted in our manuscript,
the minimization problem proposed in [16] is:

min
P s.t.

∑
j Pij=gi∑
i Pij=hj

∑
ij

PijCij − εh(P )

 , h(P ) = −
∑
ij

Pij logPij . (S28)

Here transport paths P , which generally lie in the polyhedral set described by the constraints
∑
j Pij = gi ∀i and∑

i Pij = hj ∀j, are smoothed by the entropy h(P ). This trick makes the optimization problem strictly convex, and
permits to solve it with a very efficient matrix scaling algorithm—Sinkhorn’s fixed point iteration.

We generalize the problem in Eq. (S28) in order to take in account transport tensors, G and H, which carry
information of multiple color channels, and transport paths P . In detail, we propose the following minimization
problem for each commodity—color channel—a,

min
Pa s.t.

∑
j P

a
ij=Ga

i∑
i P

a
ij=Ha

j

Jasink =
∑
ij

P aijCij − εh(P a)

 , h(P a) = −
∑
ij

P aij logP aij . (S29)

This allows to efficiently compute, using Sinkhorn’s scaling, an Optimal Transport path P aopt for each commodity,
together with its correspondent optimal cost Jasink,opt = Jasink|Pa=Pa

opt
. Finally, the Optimal Transport cost for colored

images is calculated as JRGB
sink,opt = (1/3)

∑M=3
a=1 Jasink.

MODEL INTERPRETABILITY

In this section we discuss the effect that the parameters θ, τ , and β have one the OT setup.
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First, we explain the experiment in Fig. S7. We start by sampling two images of the FD dataset belonging to
the same class. These images have identical shape, i.e. width w and height h equal to 20. They are displayed on
the leftmost part of Fig. S7. From these two images, we obtain the tensors G and H, that are transported in the
OT problem. The first, G, is constructed using all the pixels on the 11th row of Image 1, thus its dimension is
m×M = 20× 3. The same row of Image 2 is used to build H, also in this case its size is n×M = 20× 3.

The two tensors enter in Eq. (1) together with a (20× 20)-dimensional cost C, which is built with pixels’ locations
and color information using Eqs. (S1)-(S3). The scope of this discussion is to refine the intuition on these formulas,
and on the effect that θ and τ have on C. In Fig. S7 we plot the ground cost C for the two tensors G and H, for
θ = {0, 0.25, 0.5, 0.75} and τ = {0.1, 0.25, 0.5, 1}. All entries Cij > τ—which correspond to those edges that are
trimmed from the transport network—are colored in white.

Notice that for θ = 0 all costs are symmetric. Indeed in this case Cij = min{Yij , τ}, with Y that is contain-
ing the Euclidean distances between pixels’ coordinates, i.e. Eq. (S2). Here, decreasing the trimming thresh-
old τ progressively sparsifies the banded matrices drawn in the first column of Fig. S7, with limit cases being
C = diag[C0,0, C1,1, . . . , C19,19]—for τ sufficiently small, and C = Y—for τ ≥ maxij Yij . On the other hand, the
symmetry is gradually broken as θ is increased, namely, when colors of the images are are used to build into C. This
is clearly depicted in Fig. S7, where the heatmaps get progressively disordered for larger values of θ (from left to
right).
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FIG. S7. Effect of θ and τ on OT. On the left, we display the two samples used to build the ground costs C. Highlighted rows
in blue and orange are those considered to extract G and H. On the right side of the panel we plot C for θ = {0, 0.25, 0.5, 0.75}
and τ = {0.1, 0.25, 0.5, 1}. White regions correspond to trimmed values, i.e. entries of C that are larger than τ .

To further expand this discussion, we design a second experiment, schematically represented in Fig. S8. Here, we
solve the OT problem between two tensors, G and H, built similarly to those of Fig. S7. Particularly, we consider
three central pixels of the 11th rows of Image 1 and Image 2, as drawn in the leftmost part of the Figure, so that
both ga and ha are 3-dimensional arrays for all a = 1, . . . , 3, and C is a (3× 3)-dimensional matrix.

Depending on the values of θ, the ground cost C is either symmetric (θ = 0), and computed only using pixels’
coordinates, or strongly irregular (θ = 0.75), since colors of images are taken into account. In the first case, the
transport network connecting the images has also a symmetric structure. Here, elements along the diagonal of the
cost—correspondent to horizontal edges connecting orange and blue nodes with the same index—are much cheaper
than all the other entries. This is due to the fact that the Euclidean distance between two pixels with the same position
is zero (practically set to a safety default value ε = 10−5). Conversely, in the second case, introducing colors in the
ground cost translates into having higher values along the diagonal elements of C. Here, colors—which distribute
more smoothly on images—smooth out the cost as well, whose entries are more homogeneous.
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As shown in Fig. S2 and Fig. S3, taking a purely Euclidean ground cost C, i.e., θ = 0, returns higher classification
accuracy when β = 1.5. Instead, building C mostly with color information, thus setting θ = 0.75, favors β = 0.5. We
address this tendency to the effect that β has on transport paths’ consolidation, and we represent it on the rightmost
portion of Fig. S8, where we plot the Optimal Transport paths {P 1, P 2, P 3} obtained running Eqs. (2)-(3) on the OT
setup just discussed. In detail, for θ = 0, horizontal edges in the transport network are much cheaper than the others,
therefore strong consolidation of transport paths (β = 1.5) benefits classification. Conversely, since for θ = 0.75 the
entries of C are more homogeneous, distributing transport paths (β = 0.75) naturally reflects the topology of the
transport network and allows to achieve better classification performances.

Lastly, we remark that transport paths do not pass through any transshipment edge (colored in brown in Fig. S8)
since τ is conveniently set to be sufficiently large. The auxiliary edges for Kirchhoff’s law relaxation (colored in
magenta) are instead traversed by transport paths since G and H are not normalized.
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FIG. S8. Effect of β on OT. In the leftmost portion of the panel we plot Image 1 and Image 2, used in the OT problem. From
these we extract the (3×3)-dimensional tensors G and H. These are drawn together with a heatmap of the cost C, and with the
correspondent transport network. Color scales of edges and of entries of C are identical. We also use the same numbering and
color scheme for tensors’ entries, indexes of C, and network nodes. Brown and magenta auxiliary nodes and edges are added
after trimming, and after relaxing Kirchhoff’s law. On the right side of the panel we plot the transport network again, but
with edge thickness proportional to the Optimal Transport paths retrieved from Eqs. (2)-(3), and with colors correspondent
to those of the commodities a. Node sizes are proportional to the values of ga and ha, for a = 1, . . . , 3.

COMPUTATIONAL COST

Analytical discussion

Considerable effort has been spent to reduce the high complexity burden of OT problems. The O(|V |2/ε3) baseline
of Sinkhorn algorithm [16, 38, 39], where |V | is the size of the histograms transported and ε the parameter enforcing
entropic regularization, is constantly improved. Notable recent results are the class of stochastic optimization algo-
rithms proposed in [40], that have been ameliorated using greedy alternatives [41] to achieve ε-approximation of the
1-Wasserstein distance between two probability distributions in O(|V |2/ε2) arithmetic operations [22]. Recently, an
Adaptive Primal-Dual Accelerated Gradient Descent (APDAMD) scheme with complexity O(min{|V |9/4/ε, |V |2/ε2})
for the same ε-perturbed problem has been presented in [23].

In principle, our multicommodity method has a computational complexity of order O(M |V |2) for complete transport
graph topologies, i.e., when edges in the transport network K are assigned to all pixels’ pairs. Nonetheless, we achieve
a substantial decrease in complexity by sparsifying the graph with the trimming procedure of [19, 20]. Similarly to
[19], the final complexity of our algorithm is O(M |V |). This improvement can be formally justified as follows, we start
from a complete bipartite graph with |E| = |V |2/4 (for simplicitym = n = |V |/2 is assumed). First, we trim expensive
links, and reduce the number of edges of the transport network to 〈K〉|V | + |V |, where 〈K〉 is the average number
of edges connected to a node that are not trimmed by τ , and the second term |V | counts the number of inflowing
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and outflowing transshipment links. Second, we add |V |/2 links to the transport network to enforce Kirchhoff’s law
penalization, so that the final number of links amounts to |E| = |V |(〈K〉 + 3/2), which is linear with respect to the
number of nodes.

Empirically, we observe that running Eqs. (2)-(3), most of the entries of x decay to zero after a few steps, producing a
progressively sparser weighted Laplacian L[x]. This permits a faster computation of the Moore-Penrose inverse L†[x],
and of the least-square potentials φai =

∑
j L
†
ij [x]Saj thereon. An experimental thorough analysis of convergence

properties of the OT dynamics has been done in [42]. Here, it is shown that for β = 1, the Optimal Transport paths
of the unicommodity OT problem on sparse topologies amount to the solution of z linear systems as in Eq. (2),
with O(1) < z < O(|E|0.36). This bound has been found using a backward Euler scheme combined with the inexact
Newton-Raphson method for the update of x, and solving Kirchhoff’s law using an algebraic multigrid method.

Experimental runtimes benchmarking against Sinkhorn

We compare the runtime performances of the multicommodity dynamics of Eqs. (2)-(3) against the regularized
Sinkhorn algorithm of [43, 44], implemented in POT: Python Optimal Transport [31], and for which we set the
convergence threshold to ε̃sink = 0.01. Our implementation uses a forward Euler scheme for the discretization of
Eq. (3), and a sparse direct linear solver (UMFPACK) for Eq. (2). Our code was run until convergence, achieved if
(JΓ(n+ 1)− JΓ(n))/∆t < ε̃dyn, i.e. when the relative cost difference evaluated at two consecutive iteration is below
ε̃dyn = 1. We set the discretization time step ∆t = 0.5.

All codes are executed on 20 pairs of images, randomly sampled from the Jena Flowers 30 Dataset [32] and the Fruit
Dataset [33]. We compare our multicommodity dynamics (M = 3) against Sinkhorn algorithm on colored images,
and the unicommodity dynamics (M = 1) against Sinkhorn on grayscale images.

Results are shown in Fig. S9. Here, we plot elapsed times for the experiments on JF30 and on FD in the panels (a)-
(c) and (d)-(f), respectively. Subplots from left to right represent runtimes for the algorithms executed on grayscale
images [(a), (d)], on colored images [(b), (e)], and for Sinkhorn executed in both setups [(c), (f)].

Observing Fig. S9 [(a), (d)], we notice that runtimes for the multicommodity dynamics are larger than Sinkhorn’s.
Our algorithm converges faster if β < 1, i.e., when the multicommodity transport cost is convex. Setting β > 1
negatively affects convergence times. In general, for all values of β, increasing the trimming threshold τ , and thus
the average number of edges in the transport networks, leads to slower convergence. Sinkhorn algorithm is not as
dependent on |E|, e.g., in Fig. S9 (a), runtimes are approximately constant. Moreover, coherently to what expected
[16], increasing the effect of the entropic barrier—enlarging ε—makes the algorithm faster. In Fig. S9 [(b), (e)] we
observe a similar trend as in Fig. S9 [(a), (d)]. However, in this case Sinkorn algorithm with low regularization,
ε = 100, has runtimes comparable to those of our method. Lastly, in Fig. S9 [(c), (f)], we explicitly plot runtimes for
Sinkhorn on both colored and grayscale images, for different values of the regularization parameter ε. In general, the
algorithm on colored images is slower, and increasing the trimming threshold leads to higher runtimes. Moreover, we
observe again that larger value of ε makes the algorithms faster.
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FIG. S9. Runtimes of algorithms. Subplots (a)-(c) are experiments on JF30, subplots (d)-(f) are those on FD. In (a), (b), (c),
and (d) we plot with red diamonds runtimes of our dynamics, with M = 1 in (a), (d) and M = 3 in (b), (e). Blue triangles
are denote runtimes of Sinkhorn. Color shades correspond to different values of the regularization paramters. In (c) and (f) we
show runtimes of Sinkhorn against ε, with orange and green markers used for colored and grayscale images, respectively. Color
shades here denote different values of the trimming threshold τ . Errorbars are standard deviations obtained over 20 random
image pairs.


	Immiscible Color Flows in Optimal Transport Networks for Image Classification
	Abstract
	 References

	Immiscible Color Flows in Optimal Transport Networks for Image Classification: Supplemental Material (SM)
	 Construction of the network
	 Equivalence between multicommodity dynamics and OT setup
	 Stationary solutions of the multicomodity dynamics and OT minimizers
	 Multicommodity dynamics asymptotes: Lyapunov functional

	 Cross-Validation: Flowers Dataset
	 Experimental details: Fruits Dataset
	 Image preprocessing
	 Color distributions of images

	 Sinkhorn benchmarks
	 Model interpretability
	 Computational cost
	 Analytical discussion
	 Experimental runtimes benchmarking against Sinkhorn



