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Community detection in networks is commonly performed using information about interactions
between nodes. Recent advances have been made to incorporate multiple types of interactions, thus
generalising standard methods to multilayer networks. Often though, one can access additional
information regarding individual nodes, attributes or covariates. A relevant question is thus how
to properly incorporate this extra information in such frameworks. Here we develop a method
that incorporates both the topology of interactions and node attributes to extract communities in
multilayer networks. We propose a principled probabilistic method that does not assume any a priori
correlation structure between attributes and communities but rather infers this from data. This leads
to an efficient algorithmic implementation that exploits the sparsity of the dataset and can be used
to perform several inference tasks; we provide an open-source implementation of the code online.
We demonstrate our method on both synthetic and real-world data and compare performance with
methods that do not use any attribute information. We find that including node information helps
in predicting missing links or attributes. It also leads to more interpretable community structures
and allows the quantification of the impact of the node attributes given in input.

Introduction

Community detection is a fundamental task when investigating network data. Its goal is to cluster nodes into
communities and thus find large-scale patterns hidden behind interactions between many individual elements.

The range of application of this problem spans several disciplines. For instance, community detection has been used
in sociology to analyze terrorist groups in online social networks [1]; in finance to detect fraud events in telecommu-
nication networks [2]; in engineering to refactor software packages in complex software networks [3]; and in biology
to investigate lung cancer[4] and to explore epidemic spreading processes [5]. In recent years, the variety of fields
interested in this topic has broadened and the availability of rich datasets is increasing accordingly. However, most
research approaches rely on using only the information about interactions among nodes, in other words the network
topology structure. This information can be complex and rich, as is the case for multilayer networks where one
observes different types of interactions. For instance, in social networks, interactions could entail exchanging goods,
socializing, giving advice, or requesting assistance. Most network datasets, however, contain additional information
about individuals, attributes which describe their features; for instance their religion, age or ethnicity. Node attributes
are often neglected a priori by state-of-the-art community detection methods, in particular for multilayer networks.
They are instead commonly used a posteriori, acting as candidates for “ground-truth” for real-world networks to
measure the quality of the inferred partition [6, 7]; a practice that can also lead to incorrect scientific conclusions [8].
It is thus a fundamental question how to incorporate node attributes into community detection in a principled way.
This is a challenging task because one has to combine two types of information [9], while evaluating the extent to
which topological and attribute information contribute to the network’s partition [10].

To tackle these questions, we develop MTCOV, a mathematically rigorous and flexible model to address this problem
for the general case of multilayer networks, i.e., in the presence of different types of interactions. To the best our
knowledge, MTCOV is the first overlapping community detection method proposed for multilayer networks with node
attributes. The model leverages two sources of information, the topological network structure and node covariates
(or attributes), to partition nodes into communities. It is flexible as it can be applied to a variety of network
datasets, whether directed, weighted, or multilayer and it outputs overlapping communities, i.e., nodes can belong to
multiple groups simultaneously. In addition, the model does not assume any a priori correlation structure between
the attributes and the communities. On the contrary, the contribution of the attribute information is quantitatively
given as an output of the algorithm by fitting the observed data. The magnitude of this contribution can vary based
on the dataset. Even if this is not very high, for instance if the attributes are noisy or sparse, the model is nevertheless
able to use this extra information to improve performance. At the same time, if incorporating attribute information
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hurts inference tasks, the model will down weigh this contribution and instead use mostly the topological network
structure.

Our method allows domain experts to investigate particular attributes and select relevant community partitions
based on what type of node information they are interested in studying. In fact, by choosing the input data, we can
drive the algorithm to select for communities that are more relevant to the attribute under study. If the attribute
hurts performance and is consequently down weighted by the algorithm, this can be used as a signal that the attribute
might not correlate well with any partition, given the remaining topological information available, and thus inform
the expert accordingly.

We study MTCOV on synthetic multilayer networks, a variety of single-layer node-attributed real networks and
several real multilayer networks of social support interactions in two Indian villages. We measure performance based
on prediction tasks and overlap with ground-truth (when this is known). For single-layer networks, we compare
the performance of MTCOV to state-of-the-art community detection algorithms with node attributes; for multilayer
networks, we test against a state-of-the-art algorithm that does not use any node attribute information and measure
the extent to which knowing both types of information helps inference. We find that MTCOV performs well in
predicting missing links and attributes. It also leads to more interpretable community structures and allows the
quantification of the impact of the node attributes given as input.

Related Work. Several methods have been proposed to study community detection in networks [11]. In particular,
we are interested in those valid for multilayer networks [12]. These generalize single-layer networks in that they can
model different types of interactions and thus incorporate extra information which is increasingly available. Among
these, we focus on generative models for multilayer networks [13–19], which are based on probabilistic modeling like
Bayesian inference or maximum likelihood optimization. These are flexible and powerful in terms of allowing multiple
inference tasks, injecting domain knowledge into the theoretical framework, and being computationally efficient.
However, the majority of these methods do not consider node attributes as input along with the network information.
In fact, the few methods developed for community detection in multilayer networks with node attributes are based on
first aggregating the multilayer network into a single layer, either by combining directly the adjacency matrices of each
layer [20] or by using similarity matrices derived from them along with the node attributes [21, 22]. In the context
of data mining, a similar problem can be framed for learning low dimensional representations of heterogeneous data
with both content and linkage structure (what we call attributes and edges). This is tackled by using embeddings
extracted via deep architectures [23], which is rather different than our approach based on statistical inference. Our
problem bears some common ground with the one studied by Sachan et al. [24] for extracting communities in online
social networks, where users gather based on common interests; they adopt a Bayesian approach, but with a rather
different goal of associating different types of edges to topics of interest. A related but different problem is that of
performing community detection with node attributes on multiple independent networks [25, 26]; this differs with
modeling a single multilayer network in that it assumes that covariates influence in the same way all the nodes in
a network but in a different way the various networks in the ensemble. For single-layer networks, there has been
more extensive work recently on incorporating extra information on nodes [9, 25, 27–33]. Among those adopting
probabilistic modeling, some incorporate covariate information into the prior information of the latent membership
parameters [25, 34, 35], while others include covariates in an additive way along with the latent parameters [36, 37],
so that covariates influences the probability of interactions independently of the latent membership.

These works show the impact of adding nodes attributes in community detection a priori into the models to uncover
meaningful patterns. One might then be tempted to adopt such methods also in multilayer networks by collapsing
the topological structure into a suitable single network that can then be given in input to these single-layer and node-
attributed methods as done by Gheche et al.[20] However, collapsing a multilayer network often leads to important
loss of information, and one needs to be careful in determining when this collapse is appropriate and how it should
be implemented, as shown for community detection methods without attribute information [38, 39]. Thus the need
of a method that not only incorporates different types of edges but also node attributes.

Methods

We adapt recent ideas from the generative model behind MULTITENSOR[13], a multilayer mixed-membership model
based on a Poisson tensor factorization [40], to incorporate node attributes in a principled manner. It can take in input
directed and undirected networks, allowing different topological structures in each layer, including arbitrarily mixtures
of assortative, disassortative and core-periphery structures. We move beyond MULTITENSOR by incorporating node
covariates via introducing a proper likelihood term that accounts for this extra information. We use the formalism of
maximum likelihood estimation: we combine the structural and the node information into a global likelihood function
and provide a highly scalable Expectation-Maximization algorithm for the estimation of parameters.
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Model description and notation

Consider a multilayer network of N nodes and L layers. This is a set of graphs G = {G(α)
(
V, E(α)

)
}1≤α≤L defined

on a set V of N vertices shared across L ≥ 1 layers, and E(α) is the set of edges in the layer α. Each layer α ∈ {1, . . . , L}
is a graph G(α)(V, E(α)) with adjacency matrix A(α) = [a

(α)
ij ] ∈ RN×N , where a(α)ij is the number of edges of type α

from i to j; here we consider only positive discrete entries; for binary entries, E =
∑
i,j,α a

(α)
ij is the total the number

of edges. Alternatively, we can consider a 3-way tensor A with dimensions N×N×L. In addition, for each node i ∈ V
consider the vector of covariates Xi ∈ R1×K (alternatively called also attributes or metadata), where K is the total
number of attributes. Here, for simplicity we focus on the case of K = 1 and categorical covariates with Z different
categories. However, we can easily generalize to more than one covariate by encoding each possible combination of
them as a different value of one single covariate. For example, for two covariates being gender and nationality, we
can encode Xi being one covariate with possible values female/American, male/Spanish and so forth. One could
also consider real-valued covariates by cutting them into bins. Nevertheless, a future expansion should include the
possibility to work with any type of metadata.
A community is a subset of vertices that share some properties. Formally, each node belongs to a community to an
extent measured by a C-dimensional vector denoted membership. Since we are interested in directed networks, for
each node i we assign two such vectors, ui and vi (for undirected networks we set u = v); these determine how i forms
outgoing and incoming links respectively. Each layer α has an affinity matrix W (α) = [w

(α)
kl ] ∈ RC×C which describes

the density of edges between each pair (k, l) of groups. Each community k ∈ {1, . . . , C} is linked to a category
z ∈ {1, . . . , Z} by a parameter βkz, that explains how much information of the z-th category is used for creating the
k-th community. To summarize, we consider two types of observed data: the adjacency tensor A = {A(α)}1≤α≤L and
the design matrix X = {Xi}i∈{1,...,N}; the first contains information about the networks topology structure, the latter
about the node covariates. In addition, we have the model parameters that we compactly denote as Θ = {U, V,W, β}.

The goal is to find the latent parameters Θ using the data A and X. In other words, given an observed multilayer
network with adjacency tensor A and design matrix X, our goal is to simultaneously infer the node’s membership
vectors ui and vi ∀i ∈ {1, ..., N}; the affinity matrices W (α), ∀α ∈ {1, . . . , L}, and the matrix β = [βkz] ∈ RC×Z ,
which captures correlations between communities and attributes. We consider a probabilistic generative model where
MTCOV generates the network and the attributes probabilistically, assuming an underlying structure consisting of
C overlapping communities. We adopt a maximum likelihood approach where, given the latent parameters Θ, we
assume that the data A and X have independent likelihoods;

in other words, we assume that A and X are conditionally independent given the latent parameters Θ. In addition,
we assume that the memberships U and V couple the two datasets, as they are parameters shared between the two
likelihoods; whereas the W and β are specific to the adjacency and design matrix respectively. We describe separately
the procedures for modeling the topology of the network and the node attributes and then we show how to combine
them in a unified log-likelihood framework.

Modeling the network topology

In modeling the likelihood of the network topology, we adopt the ideas behind MULTITENSOR: we assume that
the expected number of edges of type α from i to j is given by the parameter:

M
(α)
ij =

C∑
k,l=1

uikvjlw
(α)
kl . (1)

We then assume that each entry a(α)ij of the adjacency tensor is extracted from a Poisson distribution with parameter
M

(α)
ij . This is a common choice for network data [41–43] as it leads to tractable and efficient algorithmic implemen-

tations, compared for instance with other approaches that use Bernoulli random variables [9, 27]; it also allows the
flexibility of treating both binary and integer-weighted networks. We further assume that, given the memberships
and affinity matrices, the edges are distributed independently; this is again a conditional independence assumption.

We can then write the likelihood of the network topology as:

PG(A|U, V,W ) =

N∏
i,j=1

L∏
α=1

e−M
(α)
ij

(
M

(α)
ij

)A(α)
ij

A
(α)
ij !

, (2)
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which leads to the log-likelihood LG(U, V,W ) for the structural dimension:

LG(U, V,W ) =
∑
i,j,α

[
A

(α)
ij log

∑
k,l

uikvjlw
(α)
kl −

∑
k,l

uikvjlw
(α)
kl

]
, (3)

where we have neglected constants that do not depend on the parameters.

Modeling the node attributes

In modeling the likelihood of the attributes, we assume that this extra information is generated from the membership
vectors; this captures the intuition that knowing a node’s community membership helps in predicting the value of
the node’s attribute. This assumption has also been made in other models for single-layer attributed networks [9]
where one wants to enforce the tendency that nodes in the same community (for assortative structures) are likely
to share common attributes. Different approaches [36, 37] assume instead independence between attributes and
membership, which follows a different idea of observing an interaction between individuals if either they belong to
the same community (for assortative structures) or they share an attribute or both.
Then, we model the probability of observing the z-th category for the attribute covariate of node i as the parameter:

πiz =
1

2

C∑
k=1

βkz(uik + vik), (4)

where βkz is the probability of observing a particular category z together with a community k; thus πi = (πi1 . . . , πiZ)

is a Z-dimensional vector such that πiz ∈ [0, 1] and
∑Z
z=1 πiz = 1,∀i. For convenience, we consider one-hot encoding

for xi = (xi1, . . . , xiZ), the realization of the random variable Xi: xiz = 1 if node i has attribute corresponding to
category z, 0 otherwise and

∑Z
z=1 xiz = 1; the original design matrix XN×1 is thus translated into a binary matrix

XN×Z .
We then assume that each entry Xi of the design matrix is extracted from a multinomial distribution of parameter
πi, which yields the likelihood of the covariates:

PX(Xi = xi|U, V, β) = PX(Xi1 = xi1, . . . , XiZ = xiZ |U, V, β) = πxi1i1 . . . πxiZiZ . (5)

In order to satisfy the sum constraint
∑Z
z=1 πiz = 1, we impose the normalizations

∑Z
z=1 βkz = 1, valid ∀k and∑C

k=1 uik =
∑C
k=1 vik = 1, valid ∀i. Such constraints are a particular case for which the general constraint for the

multinomial parameter is satisfied. Although they are not the only choices, they allow us to give a probabilistic
meaning to the components of β and the memberships U and V . As done for the network’s edges, we assume
conditional independence for the attributes on the various nodes. This leads to the log-likelihood LX(U, V, β) for the
attribute dimension:

LX(U, V, β) =

N∑
i=1

Z∑
z=1

xiz log(πiz) =
∑
i,z

xiz log
(

1

2

∑
k

βkz(uik + vik)

)
. (6)

Note, we assume that the attributes have values that can be binned in a finite number Z of unordered categories
and the attributes do not need to be one-dimensional. Indeed, we can encode each combination of more attributes as a
different value of one-dimensional “super-attribute”. The model will not be affected, but the computational complexity
might increase.

Inference with the EM algorithm

Having described how the model works and its main assumptions and intuitions, we now turn our attention to
describe how to fit the parameters to the data, in other words, how to perform inference. We assume conditional
independence between the network and attribute variables, thus we can decompose the total log-likelihood into a sum
of two terms L(U, V,W, β) = LG(U, V,W ) +LX(U, V, β). However, in practice, we can improve parameters’ inference
performance by better balancing the contributions of the two terms as their magnitude can be on different scales, thus
the risk of biasing the total likelihood maximization towards one of the two terms. For this, we introduce a scaling
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parameter γ ∈ [0, 1] that explicitly controls the relative contribution of the two terms. The total log-likelihood is
then:

L(U, V,W, β) = (1− γ)LG(U, V,W ) + γ LX(U, V, β) (7)

= (1− γ)
∑
i,j,α

[
A

(α)
ij log

∑
k,l

uikvjlw
(α)
kl −

∑
k,l

uikvjlw
(α)
kl

]
+ γ

∑
i,z

xizlog
(

1

2

∑
k

βkz(uik + vik)

)

Varying γ from 0 to 1 lets us interpolate between two extremes: analyzing the data purely in terms of the network
topology or purely in terms of the attribute information. One can either fix this a priori based on the goal of
the application, closer to 0 for link prediction or closer to 1 for attribute classification, or this can be treated as a
hyperparameter that must be estimated, whose optimal value is obtained by fitting the data via tuning techniques (for
instance cross-validation). This approach provides a natural quantitative measure for the dependence between the
communities and the two sources of information. Notice that one can rescale a priori each likelihood term individually
in order to control even more their magnitudes, and then add it to equation 7. This choice should be made based on
the dataset at hand. Here we consider rescaling LG and LX only in studying the social support networks of Indian
villages, as we have enough data for estimating the normalization coefficients; see Supplementary Section S2.1 for
details.

We wish to find the Θ = (U, V,W, β) that maximizes equation (7). In general, this is computationally difficult,
but we make it tractable by adopting a variational approach using an Expectation-Maximization (EM) algorithm
[44], similar to what done by De Bacco et al.[13], but extended here to include attribute information. Namely, we
introduce two probability distributions: hikz and ρ(α)ijkl. For each i, z with Xiz = 1, hizk represents our estimate of the
probability that the i-th node has the z-th category, given that it belongs to the community k. On the other hand,
for each i, j, α with A(α)

ij = 1, ρ(α)ijkl is the probability distribution over pairs of groups k, l.

Using Jensen’s inequality log x̄ ≥ log x for each log-likelihood term gives:

LX(U, V, β) ≥
∑
i,z

xiz
∑
k

hizk log
βkz(uik + vik)

2hizk
=
∑
i,z,k

xiz [hizk log βkz(uik + vik)− hizk log 2hizk] = LX(U, V, β, h)

(8)

LG(U, V,W ) ≥
∑

i,j,k,l,α

[
A

(α)
ij

(
ρ
(α)
ijkl log uikvjlw

(α)
kl − ρ

(α)
ijkl log ρ

(α)
ijkl

)
− uikvjlw(α)

kl

]
= LG(U, V,W, ρ) . (9)

These lower bounds hold with equality when

hizk =
βkz(uik + vik)∑
k′ βk′z(uik′ + vik′)

, ρ
(α)
ijkl =

uikvjlw
(α)
kl∑

k′,l′ uik′vjl′w
(α)
k′l′

, (10)

thus maximizing LX(U, V, β) is equivalent to maximizing LX(U, V, β, h); similarly for LG(U, V,W ) and LG(U, V,W, ρ)
(this was also the same result derived in [13]). Overall, we aim at maximizing L(U, V,W, β, h, ρ) = (1− γ)LG(U, V,W, ρ)+
γ LX(U, V, β, h), in analogy with what was done before. These maximizations can be performed by alternatively up-
dating a set of parameters while keeping the others fixed. The EM algorithm performs these steps by alternatively
updating h, ρ (Expectation step) and Θ (Maximization step); this is done starting from a random configuration until
L(Θ, h, ρ) reaches a fixed point. Calculating equation (10) represents the E-step of the algorithm. The M-step is
obtained by computing partial derivatives of L(Θ, h, ρ) with respect to the various parameters in Θ and setting them
equal to zero. We add Lagrange multipliers λ =

(
λ(β), λ(u), λ(v)

)
to enforce constraints:

L
′
(Θ, h, ρ, λ) = L(Θ, h, ρ)−

∑
k

λ
(β)
k

(
Z∑
z=1

βkz − 1

)
−
∑
i

λ
(u)
i

(
C∑
k=1

uik − 1

)
−
∑
i

λ
(v)
i

(
C∑
k=1

vik − 1

)
(11)

For instance, focusing on the update for βzk, setting the derivative with respect to it in equation (11) to zero and
enforcing the constraint

∑Z
z=1 βkz = 1 gives λ(β)k = γ

∑
i,z xizhizk; plugging this back finally gives:

βkz =

∑
i xiz hizk∑
i,z xiz hizk

, (12)
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which is valid for γ 6= 0. Doing the same for the other parameters yields (see Supplementary Section S1 for details):

uik =
γ
∑
z xizhizk + (1− γ)

∑
j,l,αA

(α)
ij ρ

(α)
ijkl

γ + (1− γ)
∑
j,αA

(α)
ij

(13)

vik =
γ
∑
z xizhizk + (1− γ)

∑
j,l,αA

(α)
ji ρ

(α)
jilk

γ + (1− γ)
∑
j,αA

(α)
ji

(14)

w
(α)
kl =

∑
i,j A

(α)
ij ρ

(α)
ijkl∑

i uik
∑
j vjl

, (15)

where equation (15) is valid for γ 6= 1. The EM algorithm thus consists in randomly initializing the parameters Θ and
then repeatedly alternating between updating h and ρ using equation (10) and updating Θ using equations (12)-(15)
until L(Θ, h, ρ) reaches a fixed point. A pseudo-code is given in Algorithm 1. In general, the fixed point is a local
maximum but we have no guarantees that it is also the global one. In practice, we run the algorithm several times,
starting from different random initializations and taking the run with the largest final L(Θ, h, ρ). The computational
complexity per iteration scales as O(M C2 +NCZ), where M is the total number of edges summed across layers. In
practice, C and Z have similar order of magnitude, usually much smaller than the system sizeM ; for sparse networks,
as is often the case for real datasets, M ∝ N , thus the algorithm is highly scalable with a total running time roughly
linear in the system size.
Notice that, although we started from a network log-likelihood LG(U, V,W ) similar to the one proposed in the
MULTITENSOR model [13], the only update preserved from that is the one of wkl in equation (15). The updates
for uik and vik are instead quite different; the main reason is that here we incorporated the node attributes, which
appear both explicitly and implicitly (through h) inside the updates. In addition, here we enforce normalizations
like

∑
k uik = 1, not enforced in MULTITENSOR. This implies that our model restricted to γ = 0, i.e., no attribute

information, does not correspond exactly to MULTITENSOR. This also implies that, upon convergence, we can directly
interpret the memberships as soft community assignments (or overlapping) without the need of post-processing their
values; in words, uik represent the probability of node i to belong to the incoming community k, similarly for vik and
an outgoing membership. This distinction is necessary when considering directed networks. If one is interested in
recovering hard memberships, where a node is assigned to only one community, then one can choose the community
corresponding to the maximum entry of u or v.
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Algorithm 1 MTCOV- EM algorithm

Input: network A = {Aij}Ni,j=1, design matrix X = {xiz}Ni=1, number of communities C, hyperparameter γ

Output: membership vectors U = [uik] , V = [vik]; network-affinity matrix W = [wkl]; attribute-affinity matrix
β = [βkz].

Initialize U, V,W, β at random.
Repeat until convergence:
1. Calculate h and ρ (E-Step):

hizk =
βkz(uik + vik)∑
k′ βk′z(uik′ + vik′)

, ρ
(α)
ijkl =

uikvjlw
(α)
kl∑

k′,l′ uik′vjl′w
(α)
k′l′

2. Update parameters Θ (M-Step):
i) for each node i and community k update memberships:

uik =
γ
∑
z xizhizk + (1− γ)

∑
j,l,αA

(α)
ij ρ

(α)
ijkl

γ + (1− γ)
∑
j,αA

(α)
ij

vik =
γ
∑
z xizhizk + (1− γ)

∑
j,l,αA

(α)
ji ρ

(α)
jilk

γ + (1− γ)
∑
j,αA

(α)
ji

ii) if γ 6= 1, for each pair of communities (k, l) update network-affinity matrix:

w
(α)
kl =

∑
i,j A

(α)
ij ρ

(α)
ijkl∑

i uik
∑
j vjl

iii) if γ 6= 0, for each pair of community-attribute (k, z) update attribute-affinity matrix:

βkz =

∑
i xiz hizk∑
i,z xiz hizk

Evaluation metrics

We adopt two different criteria for performance evaluation, based on having or not having access to ground-truth
values for the community assignments. The first case applies to synthetic-generated data, the second to both synthetic
and real-world data. We explain performance metrics in detail below.

a. Ground-truth available In the presence of a known partition, we measure the agreement between the set of
ground-truth communities C∗ and the set of detected communities C using metrics for recovering both hard and soft
assignments. For hard partitions, the idea is to match every detected community with its most similar ground-truth
community and measure similarity δ(C∗i , Cj) (and vice versa for every ground-truth community matched against a
detected community) as done by Yang et al.[9]. The final performance is the average of these two comparisons:

1

2|C∗|
∑
C∗i ∈C∗

max
Cj∈C

δ(C∗i , Cj) +
1

2|C|
∑
Cj∈C

max
C∗i ∈C∗

δ(C∗i , Cj) (16)

where here we consider as similarity metric δ(·) the F1-score and the Jaccard similarity.

In both cases, the final score is a value between 0 and 1, where 1 indicates the perfect matching between detected
and ground-truth communities. For soft partitions, we consider two standard metrics for measuring distance between
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vectors as done by De Bacco et al.[13], such as cosine similarity (CS) and L1 error, averaged over the nodes:

CS(U,U0) =
1

N

N∑
i=1

ui · u0i
||ui||2 ||u0i ||2

=
1

N

N∑
i=1

C∑
k=1

uik u
0
ik

||ui||2 ||u0i ||2
(17)

L1(U,U0) =
1

2N

N∑
i=1

||ui − u0i ||1 =
1

2N

N∑
i=1

C∑
k=1

|uik − u0ik| , (18)

where ui is the C-dimensional vector containing the i-th row of U , representing the detected membership and similarly
for u0i for the ground-truth U0. The factor 1/2 ensures that the L1 distance ranges from 0 for identical distributions
to 1 for distributions with disjoint support. Similarly to the what done for hard partitions, we match the ground-truth
and detected communities by choosing the permutation of C groups that gives the highest cosine similarity or smallest
L1 distance.
b. Ground-truth not available In the absence of ground-truth, these metrics cannot be computed, and one must

resort to other approaches for model evaluation. Here we consider performance in prediction tasks when hiding part of
the input datasets while fitting the parameters, and in particular on the extent to which partial knowledge of network
edges helps predict node attributes and vice versa. Thus we consider a measure for link-prediction and one for correct
retrieval of the attributes. For link-prediction, we used the AUC statistic, equivalent to the area under the receiver-
operating characteristic (ROC) curve [45]. It represents the probability that a randomly chosen missing connection (a
true positive) is given a higher score than a randomly chosen pair of unconnected vertices (a true negative). Thus, an
AUC statistic equal to 0.5 indicates random chance, while the closer it is to 1, the more our model’s predictions are
better than chance. We measure the probability of observing an edge as the predicted expected Poisson parameters
of equation (1). For the attribute, instead, we use the accuracy as a quality measure. For each node, we compute
the predicted expected multinomial parameter πi using equation (4). We then assign to each node the category with
the highest probability, computing the accuracy as the ratio between the correctly classified examples over the total
number of nodes. As baselines, we compare with the accuracy obtained with a random uniform probability and the
highest relative frequency observed in the training set.

Cross-validation tests and hyperparameter settings

We perform prediction tasks using cross-validation with 80-20 splits: we use 80% of the data for training the
parameters and then measure AUC and accuracy on the remaining 20% test set. Specifically, for the network topology,
we hold out 20% of the triples (i, j, α); for the attributes, we hold out 20% of the entries of the categorical vector.
Our model has two hyperparameters, the scaling parameter γ and the number of communities C. We estimate
them by using 5-fold cross-validation along with grid search to range across their possible values. We then select
the combination (Ĉ, γ̂) that returns the best average performance over the cross-validation runs. Standard cross-
validation considers performance in terms of a particular metric. However, here we have two possible ones which
are qualitatively different, i.e., AUC and accuracy. Depending on the task at hand, one can define performance as
a combination of the two, bearing in mind that the values of (Ĉ, γ̂) at the maximum of either of them might not
coincide. Here we select (Ĉ, γ̂) as the values are jointly closer to both the maximum values. In the experiments
where one of the two hyperparameters is fixed a priori, we run the same procedure but vary with grid search only the
unknown hyperparameter.

Results

We test MTCOV’s ability to detect communities in multilayer networks with node attributes by considering both
synthetic and real-world datasets. We compare against MULTITENSOR[13], an algorithm similar to ours but that
does not include node attributes. We also test MTCOV’s performance on single-layer networks, as the mathematical
framework behind MTCOV still applies. Given this potential use and the paucity of algorithms suitable for comparison
for multilayer networks, such comparisons assess the general utility of MTCOV.

Multilayer synthetic networks with ground-truth

To illustrate the flexibility and the robustness of our method, we generate multilayer synthetic networks with dif-
ferent kinds of structures in the various layers adapting the protocol described in De Bacco et al.[13] to accommodate
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node attributes. We generate attributes as done in Newman and Clauset [27]: we match them with planted com-
munities in increasing ratios varying from 0.3 to 0.9; these values correspond also to the γ parameters that we fix
for MTCOV. Specifically, we generate three types of directed networks using a stochastic block model [46], all with
C = 2 communities of equal-size unmixed group membership and N = 1000 nodes, but with different numbers and
kinds of layers, similar to De Bacco et al.[13]. The first network (G1) has L = 2 layers, one assortative (Wα has
higher diagonal entries) and one disassortative (Wα has higher off-diagonal entries); the second (G2) has L = 4 layers,
two assortative and two disassortative and the third (G3) has L = 4 layers, one assortative, one disassortative, one
core-periphery (Wα has higher diagonal entries but one of the two is bigger than the other) and one with biased
directed structure (Wα has higher off-diagonal entries but one of the two is bigger than the other). We generate ten
independent samples of each of these types of networks and use all the evaluation metrics described in the Methods
section in the presence of ground-truth. We use the membership inferred by the algorithms using the best maximum
likelihood fixed point over 10 runs with different random initial conditions. As shown in Table I, MTCOV performs
significantly better than MULTITENSOR on the first and second network. This suggests that incorporating attribute
information can significantly boost inference, with an increasing benefit for a smaller number of layers. Figure 1 shows
an example of this result. On the other hand, notice that G2 requires a smaller match (γ = 0.5) between attributes
and communities than G1 (γ = 0.7) to achieve similar performance. G1 and G2 have similar structure but the second
has twice as many layers. Thus, increasing the number of layers may require less contribution from the extra informa-
tion of the attributes, a possible advantage for multilayer networks. This intuition is reinforced by noticing not only
that the best performance is achieved for γ < 0.9, but also that both the algorithms perform very well in the third
network, regardless of the value of the match between attributes and communities. Contrary to G2, G3 has a different
structure in each of the 4 layers. This diversity can be even more beneficial than having more but correlated layers
(as in G1 vs G2). These synthetic tests demonstrate the impact of leveraging both node attributes and topological
information: when topological structure is not very informative (as in G1 with only two layers), adding node attributes
can significantly help in recovering the communities. In contrast, when topological information is more complex (as
in G3 where all layers are different), properly combining the different layers’ structures can compensate for a limited
access to extra information on nodes. Overall, this shows the need for methods suited for exploiting various sources
of information and the complexity behind multilayer networks.

G1 G2 G3

Method F1-score Jaccard CS L1 F1-score Jaccard CS L1 F1-score Jaccard CS L1

MULTITENSOR 0.512±0.006 0.344±0.006 0.585±0.005 0.492±0.004 0.514±0.006 0.346±0.06 0.614±0.005 0.490±0.005 0.999±0.001 0.998±0.001 0.991±0.001 0.063±0.002
MTCOV_0.3 0.7±0.2 0.5±0.2 0.7±0.1 0.4±0.1 0.8±0.2 0.7±0.2 0.8±0.1 0.3±0.2 0.995±0.002 0.990±0.004 0.984±0.002 0.080±0.004
MTCOV_0.5 0.6±0.1 0.5±0.2 0.7±0.1 0.4±0.1 0.992±0.005 0.985±0.009 0.986±0.004 0.064±0.004 0.996±0.002 0.992±0.004 0.985±0.002 0.079±0.004
MTCOV_0.7 0.988±0.002 0.976±0.004 0.977±0.002 0.079±0.003 1.±0. 1.000±0.001 0.991±0.001 0.062±0.002 0.994±0.002 0.988±0.004 0.982±0.001 0.087±0.002
MTCOV_0.9 0.958±0.003 0.920±0.005 0.977±0.001 0.050±0.002 0.992±0.002 0.984±0.004 0.988±0.001 0.050±0.002 0.976±0.003 0.952±0.006 0.982±0.002 0.051±0.003

TABLE I: Performance of algorithms MULTITENSOR and MTCOV on synthetic multilayer networks with
attributes. We use different matches (one per row, e.g. MTCOV_0.3 denotes a match of 0.3, this is also the value we
use to fix γ) between attributes and planted communities on synthetic directed multilayer networks. Results are
averages and standard deviations over 10 networks samples for each network type Gm, m = 1, 2, 3; we take the
average performance over the in-coming and out-going memberships, i.e., the matrices U and V , and the best
performances are in boldface. Networks are generated with stochastic block model with C = 2, N = 1000 and
average degree k = 4. Denote W a, W d, W cp and W bd, the affinity matrices of the assortative, disassortative,
core-periphery and the biased directed layers respectively. Then, their entries are
wa11 = wa22 = wd12 = wd21 = wcp11 = wbd12 = kC

N , wa12 = wa21 = wd11 = wd22 = wcp12 = wcp21 = wbd11 = wbd22 = 0.1× kC
N and

wcp22 = wbd12 = 0.03× kC
N . The F1-score, Jaccard, CS and L1 are performance metrics as defined in the Methods

section.

Multilayer social support network of rural Indian villages

We demonstrate our model beyond synthetic data by applying it to social support networks of two villages in
Tamil Nadu, India, which we call by the pseudonyms “Tenpat.t.i” (Ten) and “Alakāpuram” (Ala) [47–49]. Data were
collected in the form of surveys where adult residents were asked to nominate those individuals who provided them
with various types of support, including running errands, giving advice, and lending cash or other household items.
These were collected in two rounds, one in 2013 and the other in 2017. Each type of support corresponds to a layer in
the network; we consider only those layers present in both rounds, for a total of L = 6 layers. After pre-processing the
data, by considering only those individuals that had at least one outgoing edge and removing self-loops, the resulting
networks have the size reported in Table II. In addition, several attributes were collected, which include information
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(a) Ground-truth (b) MULTITENSOR (c) MTCOV, γ = 0.5 (d) MTCOV, γ = 0.7

FIG. 1: Partition of a synthetic multilayer network with attributes. We generated synthetic directed multilayer
networks using a stochastic block model, that aligns with G1. To illustrate, here we do the equivalent task on a
smaller network of size N = 299, C = 2 communities of equal-size unmixed group membership and L = 2 layers, of
which one assortative (green) and one disassortative (pink); (a) the ground-truth partition; (b-d) the communities
inferred by three different methods: (b) MULTITENSOR, an algorithm without attributes, (c) MTCOV using the
network structure and the attributes with the same proportion, i. e. γ = 0.5 and (d) MTCOV using mostly the
attribute structure, i.e. γ = 0.7. Colors denote the inferred partition; the attributes in (c) and (d) are generated by
matching them with true community assignments for the 50% and 70% of the nodes respectively, and chosen
uniformly at random from the non-matching values; square and triangle denote the synthetic dummy attribute
(squares are matched with the red group, triangles with the blue) and the size of the node shows the nodes matched
with the true community (bigger means deterministic match, smaller means uniform at random match). We use the
matrix U for the membership.

about age, religion, caste, and education level. Ethnographic observation in these villages [47] and previous analyses
[48, 49] suggest that social relations are strongly structured by religious and caste identity, with these divisions
shaping where people live, who they marry, and who they choose to associate with. In other words, they suggest
a dependence between the attributes religion and caste and the mechanisms driving edge formation in these social
support networks. Motivated by these insights, here we consider the attributes caste and religion and add them into
the model. In addition, we test the importance of variables that we expect to be less informative, such as gender and
age. The latter, being continuous, is also an example of a non-categorical variable. Provided it has a finite range, as
it is the case for age, we can encode it into categorical by binning its values. Here we use equal bins of size 5 years.

Village Year Nodes Edges 〈k〉 Caste Religion Age Gender
Alakāpuram 2013 419 4161 20 14 3 11 2

2017 441 5578 25 13 3 12 2
Tenpat.t.i 2013 362 3374 19 11 2 11 2

2017 346 3806 22 9 2 12 2

TABLE II: Network summary statistics for the four social support networks of Indian villages. Each has the same
set of 6 layers and Edges are the total over them; 〈k〉 is the average degree per node on the whole multilayer
network. The columns Caste, Religion, Age and Gender are the number of different categories observed in each
network for their respective attribute.

Without assuming a priori any ground-truth, we measure performance using the AUC and accuracy as explained
in the Methods section. We compare with MULTITENSOR to measure the extent to which adding the attributes
helps predicting edges and attributes; in addition, in terms of accuracy values, we considered two baselines for further
comparisons: i) a uniform at random probability over the number of possible categories (RP); and ii) the maximum
relative frequency of the attribute value appearing more often (MRF). We fix hyperparameters using 5-fold cross-
validation and obtain values of γ ∈ [0.2, 0.9], signaling relevant correlations between attributes and communities.
For details, see Supplementary Table S2. Empirically, we observe that when γ > 0.5 the algorithm achieves better
performance in terms of link and attribute prediction by well balancing the log-likelihood of the attribute dimension
and the one of the network structure.

For validation, we split the dataset into training/test sets uniformly at random as explained in the Methods
section. Table III reports the average results over ten runs for each network, and shows that MTCOV is capable of
leveraging two sources of information to improve both performance metrics. In fact, our algorithm systematically



11

achieves the highest accuracy for attribute prediction and the highest AUC for edge prediction (boldface). While
a good performance in attribute prediction is expected by design as we add this data into the model, the fact that
it also boosts performance in terms of edge prediction is not granted a priori. Instead, it is a quantitative way
to show that an attribute plays an important role in the system. It also demonstrates the potential of capturing
correlations between two different sources of information, which can have relevant applications, in particular when
missing information of one kind. Notice in particular the improvement in AUC when using caste compared to no
attribute given (MULTITENSOR). The other attributes are less informative; in particular age has a performance
similar to MULTITENSOR in edge prediction, signaling that it does not contribute to inform edge formation. Indeed,
it has the smallest inferred γ (always < 0.5), which gives also worse accuracy performance than the baseline, signaling
again that this attribute may not be correlated with the community structure. All these results show the flexibility of
MTCOV in adapting based on the data given in input: if warranted, it is able to ignore those attributes that are not
correlated with network division and instead find communities that are mainly based on the network structure. Next,
we test how adding node attributes impacts robustness against unbalanced data, where the ratio of positive examples
(existing edges) observed in the training is different than that in the test set. We denote the total probability of
selecting an edge in the test as tpe and consider values tpe ∈ {0.001, 0.004, 0.015, 0.03} denoting under-representation
(0.001), equal (0.004), and over-representation (values 0.015 and 0.03) compared to the uniform at random selection
(empirically we find tpe = 0.004). In these tests, we hold out 20% of the entries of A biasing their selection using
the tpe values; in addition, we give as input the whole design matrix X (attributes) and measure link prediction
performance. We observe that MTCOV is significantly more robust than the algorithm that does not use any attribute
information, regardless of the value of γ. In fact, even though performance deteriorates as we decrease the number of
positive examples in the training set (i.e., higher tpe), MTCOV is less impacted by this, as shown in Fig. 2 (results
reported in Supplementary Table S3). Notice in particular performance discrepancies when using the attribute caste
in the difficult regimes (tpe ∈ {0.015, 0.03}): MTCOV’s performance deteriorates only a little, while using the other
attributes or none makes performance significantly worse, with AUC down to 0.6 from a value higher than 0.8 for
easier regimes. Moreover, notice that attributes with the same scaling parameter value can give different prediction
results, underlying the necessity to consider both the value of the estimated γ and the quality of the attribute for
quantifying its importance. This could explain why caste provides always better results, given by the fact that its
categories are more heterogeneous (i.e., more information) than religion and gender. The robustness of MTCOV is also
confirmed by analyzing the performances on a trial-by-trail basis, each trial being a random sample of the held-out
entries. As we show in Fig. 3, MTCOV better predicts links in 89% of the trials and never goes below the threshold
of 0.5, the baseline random choice. These results demonstrate how adding another source of information helps when
observing a limited amount of network edges.

ACCURACY for attribute prediction AUC for link prediction
Attribute Method Ala 2013 Ala 2017 Ten 2013 Ten 2017 Ala 2013 Ala 2017 Ten 2013 Ten 2017

MULTITENSOR 0.771±0.009 0.835±0.006 0.758±0.005 0.81±0.01

Caste
RP 0.07 0.08 0.10 0.11
MRF 0.556±0.009 0.57±0.01 0.32±0.01 0.33±0.02
MTCOV 0.80±0.05 0.77±0.05 0.69±0.09 0.74±0.07 0.837±0.009 0.858±0.008 0.829±0.006 0.82±0.01

Religion
RP 0.33 0.33 0.50 0.50
MRF 0.837±0.008 0.843±0.006 0.696±0.008 0.679±0.008
MTCOV 0.96±0.02 0.95±0.03 0.76±0.08 0.80±0.05 0.813±0.007 0.83±0.01 0.81±0.02 0.80±0.01

Age
RP 0.09 0.08 0.09 0.08
MRF 0.135±0.005 0.126±0.007 0.126±0.005 0.128±0.008
MTCOV 0.11±0.03 0.11±0.02 0.13±0.04 0.10±0.03 0.80±0.01 0.823±0.008 0.783±0.009 0.80±0.01

Gender
RP 0.50 0.50 0.50 0.50
MRF 0.584±0.009 0.58±0.01 0.56±0.01 0.55±0.01
MTCOV 0.61±0.05 0.65±0.04 0.58±0.08 0.71±0.08 0.79±0.02 0.831±0.009 0.80±0.01 0.81±0.01

TABLE III: Prediction performance on real multilayer networks with attributes. Results are averages and standard
deviations over 10 independent trials of cross-validation with 80-20 splits selected uniformly at random (i.e.,
tpe = 0.004); the best performances are in boldface. Datasets are described in Table II. RP is the performance of
uniform random probability and MRF the one of the maximum relative frequency, see Methods section for details.
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FIG. 2: Probabilistic link prediction with biased edge sampling. Results are AUC values of MTCOV and
MULTITENSOR on four social support networks in different held-out settings. Here tpe indicates the total
probability of selecting one edge (positive example) in the test set. We considered Caste, Religion, Age and Gender
attributes; results are averages and standard deviations over 10 independent runs.

FIG. 3: Trial-by-trial probabilistic link prediction with
biased edge sampling. The values of AUC for MTCOV
and MULTITENSOR are shown on the vertical axis and
the horizontal axis respectively. The brightness represents
the hardness of the settings in terms of biasing the edge
sampling in the training. From bottom to top: tpe = 0.03
(hard, dark color), tpe = 0.015, tpe = 0.004 (random),
tpe = 0.001 (easy, light color). Points above the diagonal,
shown in shades of red, are trials where MTCOV is better
performing than MULTITENSOR. The fractions for which
each method is superior are shown in the plot legend. We
use the attribute Religion.

Qualitative analysis of a social support network

To demonstrate our MTCOV model beyond prediction tasks and highlight its potential for interpretability, we show
as an example its qualitative behavior on the real network of Alakāpuram in 2017 (see Table II). Specifically, we
compare the communities extracted by our algorithm and those inferred by MULTITENSOR. To ease comparison, we
fix the same number of groups to C = 4 for both algorithms and measure how caste membership distributes across
communities, and fix γ = 0.8 as obtained with cross-validation. Figure 4 shows the magnitude of each individual’s
inferred outgoing memberships ui in each group. While the communities identified by MTCOV and MULTITENSOR
show substantial similarities, MTCOV generally classifies castes more consistently into distinct communities, as we
show in Fig. 4 and 5. To make a quantitative estimate of the different behaviors, we measure the entropy of the
attribute inside each community Hk = −

∑Z
z=1 fz log fz/ log(Z), where fz is the relative frequency of the z-th caste

inside a group k, and the denominator is the entropy of a uniform distribution over the Z castes, our baseline for
comparison. Values of Hk close to 1 denote a more uniform distribution of castes, whereas smaller values denote
an unbalanced distribution with most of the people belonging to a few castes. We found that MTCOV has smaller
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entropies over the groups, with two groups having the smallest values, whereas MULTITENSOR have the highest,
showing its tendency to cluster individuals of different castes in the same group. In addition, we observe that MTCOV
has a more heterogenous group size distribution which seems to be correlated with caste. Notably, the algorithms
differ in how they place two caste groups that live in hamlets separated from the main village (the Hindu Yātavars
and CSI Paraiyars). With MULTITENSOR, they are grouped together, while with MTCOV, the Hindu Yātavars are
joined up into a community with Pal.l.ars and Kulālars. While MULTITENSOR is clearly picking up the structural
similarities of the two hamlets, this division makes little sense socially and culturally. In contrast, the way in which
MTCOV defines a community which spans caste boundaries (MTCOV C1) aligns with ethnographic knowledge of the
relations between these castes. Finally, we remark that there might be multiple meaningful community divisions in
the network, and the fact that MTCOV’s partition seems to better capture the distributions in the attribute caste
does not mean than one algorithm is better than the other. In fact, there might be other hidden topological properties
that MULTITENSOR’s partition is picking up by being agnostic to caste membership. The choice of which algorithm
to use should be made based on the final goal of the application at hand.

(a) Caste

(b) MTCOV

(c) MULTITENSOR

FIG. 4: Attributes and inferred communities. Nodes of the social support network of Alakāpuram in 2017 are
colored by: (a) the attribute Caste (with colors as shown in Fig. 5); inferred communities by (b) MTCOV and (c)
MULTITENSOR. Darker values in the grey scales indicate higher values of the entry of the membership vector ui.

Results on single-layer networks

Our model can be used for single-layer networks as well. For these we can compare against two state-of-the-
art algorithms, both probabilistic generative models but different in their assumptions: CESNA[9] which considers
overlapping communities and posits two independent Bernoulli distributions for network edges and node attributes;
and the model proposed by Newman and Clauset [27] (NC) for non-overlapping communities, a Bayesian approach
where the priors on the community memberships depend on the node attributes. CESNA, similarly to our model,
assumes conditional independence of the two likelihoods and introduces a regularization parameter between them; it
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FIG. 5: Partition of the attribute
Caste inside each community detected
by MTCOV and MULTITENSOR in the
social support network of Alakāpuram
in 2017. The category Other contains
small categories having less than five
individuals. The label on top of each bar
is the value of the entropy of the
variable Caste inside the corresponding
community. Note that nodes can have
mixed membership, here we build a
group k by adding to it all nodes i that
have a non-zero k-th entry uik. The
number of nodes is N = 441,
corresponding to the maximum value of
the y-axis plotted.

F1-score Jaccard similarity
Method facebook football polblogs facebook football polblogs
MTCOV 0.5±0.1 0.86±0.03 0.8±0.2 0.4±0.1 0.82±0.04 0.8±0.2
NC 0.48±0.08 0.82±0.06 0.95±0.09 0.36±0.08 0.75±0.08 0.9±0.1
CESNA 0.46±0.09 0.7±0.0 0.6±0.0 0.33±0.08 0.6±0.0 0.4±0.0

TABLE IV: Performance of methods MTCOV, NC and CESNA on three datasets, according to two different
measures used in the equation (16). The results are averages and standard deviations over ten independent runs and
the best outcomes are bolded.

uses block-coordinate ascent for parameters’ estimation, while NC uses an EM algorithm for parameters’ estimation,
similarly to what we do here. We test MTCOV against them on both synthetic and real single-layer networks with
node attributes, with and without ground-truth. We transform directed networks to undirected because both CESNA
and NC do not distinguish for edge directionality. Results on synthetic data show that MTCOV and NC have similar
performance in correctly classifying nodes in their ground-truth communities and both are better than CESNA; the
main difference is that MTCOV is more stable and has less variance for high attribute correlation, in particular in
the hard regime where classification is more difficult. We leave details in the Supplementary Section S3. For single-
layer real networks, we use datasets with ground-truth candidates and node attributes: the ego-Facebook network[50]
(facebook), a set of 21 networks built from connections between a person’s friends where potential ground-truth are
circles of friends hand-labeled by the ego herself; the American College football network (football) [51], a network
of football teams playing against each other, where a ground-truth candidate is the conference to which each team
belongs; and a network of political blogs [52] (polblogs) where potential ground-truth communities are divided by
left/liberal and right/conservative political parties, see Supplementary Section S3 for details. For each network, we
run a 5-fold cross-validation procedure combined with grid-search for fixing the hyperparameter γ. For facebook we
find that the average over the 21 networks is γ = 0.15, which signals a low correlation between the covariates and
the communities, whereas for the football and polblogs networks we obtain much higher values of γ equal to 0.6 and
0.75 respectively. MTCOV has better performance in terms of F1-score and Jaccard similarity across the majority of
datasets, as shown in Table IV. This is also supported by a trial-by-trial comparison shown in Fig. 6 for F1-score
(similar results are obtained for Jaccard), where we find that MTCOV is more accurate in 59% and 90% of the cases
than NC and CESNA, respectively.

Discussion

We present MTCOV, a generative model that performs overlapping community detection in multilayer networks
with node attributes. We show its robustness in adapting to different scenarios, and its flexibility in exploiting the
attributes that are more informative while ignoring those that are less correlated with the network communities. Our
method is capable of estimating quantitatively the contribution given by the attributes and incorporating them to
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FIG. 6: Trial-by-trial performance in F1-score. We compare MTCOV on the y-axis, with on the x-axis (left) NC
and (right) CESNA. Markers denote the datasets: squares for facebook, triangles for football and circles for polblogs.
Points above the diagonal, shown in red, are trials where MTCOV is more accurate than the other. The fractions for
which each method is superior are shown in the plot legend.

improve prediction performance both in terms of recovering missing attributes and in terms of link prediction. This
allows domain experts to investigate particular attributes and select relevant community partitions based on what
type of node information they are interested in investigating. There are valuable possible extensions of this work.
One example is to incorporate modeling of more complex data types for the attributes, for instance combinations of
discrete and continuous attributes, or other types of extra information, like time-varying network elements, whether
the attributes, node, edges or combinations of these. From a technical point of view, when the topological and attribute
datasets are very unbalanced in size, this might impact their relative likelihood weight and thus inference. One should
then consider automating the process of rescaling them accordingly, as a pre-processing step to be incorporated into
the model. Similarly, hyperparameter selection would benefit from an automatized routine when more than one
performance metric is considered. The relations between attributes and communities could be transferred across
networks to predict missing information when having access to similar but incomplete datasets. We show examples of
these here, where we studied two snapshots of the same village networks across time. While we leave these questions
for future work, we provide an open source version of the code.

Data availability

The code used for the analysis and to generate the synthetic data is publicly available and can be found at
https://github.com/mcontisc/MTCOV.
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Supporting Information (SI)

S1. Methods: EM detailed derivation

We show derivations of the updates given in equations (12)-(15) of the main manuscript.
The partial derivative with respect to the elements of the affinity matrices W (α) is given by
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kl
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The valid update when γ is different from 1, is given by setting equation (S1) to zero and we obtain

w
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In order to take the derivative with respect to βkz we need to consider the Lagrange multiplier λ(β)k because of the
constraint in equation (11). Then,
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and setting it to zero implies

βkz =
γ

λ
(β)
k

∑
i

xizhizk . (S4)

Enforcing the constraint (11), we have ∑
z
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which implies
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Plugging (S6) into (S4), we obtain the update:
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Focusing the attention on the elements of the matrix U , we first consider that plugging the update for w(α)
kl given in

equation (S2) into the log-likelihood of the structural dimension LG, the last term becomes a constant. Indeed,
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since
∑
k,l ρ

(α)
ijkl = 1 and

∑
i,j A

(α)
ij is the number of links in layer α when the network is directed (or twice this value in

the undirected case). Thus, we can ignore this term when estimating uik. Using the same strategy used in computing
the update of β, we compute the Lagrange multiplier λ(u)i for the constraint in equation (11). Then,
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Enforcing the constraint
∑
k uik = 1 yields:
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which implies
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since
∑
k hizk = 1,

∑
k,l ρ

(α)
ijkl = 1 and

∑
z xiz = 1. Plugging the result of equation (S12) into the equality (S10) we

obtain
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In order to compute the update for V , we fix j and l, rewriting the attribute dimension LX(U, V, β, h) as

LX(U, V, β, h) =
∑
j,z,l

xjz(hjzl log(βlz(ujl + vjl))− hjzl log(hjzl)). (S14)

Analogously to before, we consider the Lagrange multiplier to satisfy the constraint given in equation (11), and we
obtain
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∑
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In each iteration of the EM algorithm, the parameters in Θ = (U, V,W, β) are updated with equations (S2), (S7),
(S13) and (S15), until the log-likelihood L(Θ, h, ρ) reaches a fixed point.

S2. Multilayer social support network of rural Indian villages

A. Normalization

A way to control the magnitude of the likelihood terms is rescaling each term individually. Here, we estimate two
linear regression models in order to obtain the normalization constants for the two terms. Given the access to several
network datasets of the same kind (social support networks in Indian villages), we collect log-likelihood values with
respect to the number of nodes (N), edges (E) of the observed network and the number of categories of the categorical
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attribute (Z). Quantitatively, this means normalizing as:

L = (1− γ)
LG

cGNN + cGEE + cGZZ
+ γ

LX
cXNN + cXEE + cXZ Z

. (S16)

The super and the subscripts of the c parameters indicate the dependent variable (LX or LG) and the input regressor
they refer to, respectively. In particular, we collect the data by running the model for each pair of network and
categorical attribute, arbitrarily fixing the number of communities C = 3 and the scaling parameter γ = 0.5. Table
S1 states the values of the statistically significant coefficients for the estimation of the log-likelihood terms, and only
those coefficients are used in the normalized equation (S16).

LX LG
cN −0.486∗∗∗ −1.778∗∗

cE −6.158∗∗∗

cZ −33.862∗∗∗

TABLE S1: Coefficient estimates cXN , cXE , cXZ , cGN , cGE and cGZ for the two linear regression models.

On one side, this procedure allows to obtain coefficient estimates useful for analyzing all four networks of Indian
villages in a quantitative and automatized way. On the other side, we are aware that these coefficients are strictly
related to the type of network we are working with, i.e. their values cannot be used in network datasets other than the
social support networks used here. Future works should investigate an automated normalization procedure applicable
to any network dataset as a pre-processing step.

B. Hyperparameter fitting

Hyperparameters setting
Attribute Method Ala 2013 Ala 2017 Ten 2013 Ten 2017

MULTITENSOR C = 8 C = 9 C = 3 C = 3

Caste MTCOV C = 7, γ = 0.8 C = 7, γ = 0.8 C = 6, γ = 0.8 C = 6, γ = 0.9

Religion MTCOV C = 6, γ = 0.8 C = 6, γ = 0.8 C = 6, γ = 0.7 C = 6, γ = 0.7

Age MTCOV C = 8, γ = 0.4 C = 8, γ = 0.3 C = 9, γ = 0.2 C = 7, γ = 0.3

Gender MTCOV C = 10, γ = 0.8 C = 10, γ = 0.7 C = 10, γ = 0.4 C = 9, γ = 0.7

TABLE S2: Values of the hyperparameters C and γ extracted by 5-fold cross-validation combined with grid-search.

C. Biased link prediction

We use sampling bias techniques for assigning higher or lower sampling probability to the entries of the adjacency
tensor, which correspond to edges and non-edges. By defining tpe the total probability of selecting one edge (non-zero
entry), we assign to the entries a(α)ij > 0 the probability of being selected in the test set given by:

p1 =
tpe
E

, (S17)

and for 0 entries

p2 =
1− tpe
N2 L− E

, (S18)
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where E and N2 L are the total number of the edges and entries of the adjacency tensor respectively. These two
probabilities are assigned to the entries a(α)ij for performing a biased selection while choosing test and train sets, as
in a selection of a binary mask. The tpe is used to select entries for the test set; in case of selecting entries uniformly
at random, this value would be around 0.004. This low value is due to the common case in real networks of having
sparse matrices, where the number of non-zero entries is much lower than the number of zeros. We create three
different situations, starting from tpe = 0.001 where the probability of selecting one edge is lower than the probability
of choosing one non edge, and the number of edges in the training set is much higher than the number in the test
set. Then we have tpe = 0.015 and finally tpe = 0.03, where the probability of selecting one edge in the test set
is higher than the probability of choosing one non edge, and the test set has a bigger number of positive examples.
These settings follow an increasing order of complexity, starting from an under-represented case, where tpe = 0.001,
and ending with a difficult task where the number of edges in the test set is over-represented, tpe = 0.03. We run 10
independent trials for each setting and model.

AUC for link prediction
Edge bias sampling Attribute Method Ala 2013 Ala 2017 Ten 2013 Ten 2017

tpe = 0.001

MULTITENSOR 0.82±0.01 0.85±0.01 0.78±0.02 0.82±0.02
Caste MTCOV 0.851±0.008 0.87±0.01 0.85±0.01 0.83±0.02
Religion MTCOV 0.82±0.02 0.85±0.02 0.83±0.02 0.83±0.01
Age MTCOV 0.83±0.01 0.83±0.01 0.81±0.02 0.821±0.009
Gender MTCOV 0.81±0.02 0.85±0.02 0.83±0.01 0.82±0.01

tpe = 0.004

MULTITENSOR 0.771±0.009 0.835±0.006 0.758±0.005 0.81±0.01
Caste MTCOV 0.846±0.007 0.865±0.006 0.838±0.006 0.82±0.01
Religion MTCOV 0.816±0.009 0.83±0.01 0.81±0.01 0.82±0.01
Age MTCOV 0.82±0.01 0.83±0.01 0.791±0.009 0.79±0.02
Gender MTCOV 0.790±0.007 0.83±0.02 0.81±0.01 0.82±0.02

tpe = 0.015

MULTITENSOR 0.62±0.01 0.73±0.01 0.68±0.01 0.76±0.01
Caste MTCOV 0.806±0.008 0.847±0.006 0.811±0.007 0.812±0.006
Religion MTCOV 0.76±0.01 0.81±0.01 0.75±0.01 0.78±0.01
Age MTCOV 0.68±0.01 0.77±0.02 0.68±0.02 0.74±0.03
Gender MTCOV 0.71±0.01 0.79±0.02 0.70±0.01 0.76±0.02

tpe = 0.03

MULTITENSOR 0.46±0.01 0.554±0.009 0.55±0.01 0.63±0.01
Caste MTCOV 0.73±0.01 0.79±0.01 0.760±0.008 0.77±0.01
Religion MTCOV 0.68±0.02 0.74±0.02 0.64±0.02 0.68±0.01
Age MTCOV 0.54±0.02 0.63±0.02 0.54±0.01 0.61±0.02
Gender MTCOV 0.58±0.01 0.66±0.02 0.55±0.02 0.65±0.01

TABLE S3: Prediction performance on real multilayer networks with attributes and bias sampling on edges.
Results are averages and standard deviations over 10 independent trials of cross-validation with 80-20 splits applied
to the entries of A (the whole X is given in input); best performances are in boldface. Datasets are described in the
main manuscript.

S3. Single-layer networks experiments

We generate 10 independent realization with different random initializaton for each network. We run NC setting
the maximum number of BP steps before aborting to 40 and maximum number of EM steps before aborting to 500
to be consistent with MTCOV. MTCOV and CESNA use the fraction match as weight between the network and
attributes. Moreover, for CESNA we add a new community with all non-classified nodes, and this is done for all tests.
Therefore, NC and MTCOV give the possibility to decide if considering a hard membership or a mixed one, thanks to
the posterior probabilities given as output, and assigning the community with the highest probability, even though
NC doesn’t mention the possibility of mixed-membership in the paper. On the other hand, CESNA does not return
those values, and we have to work with their output files which provide an overlapping partition of the nodes.
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A. Single-layer synthetic networks

In analogy with what done for multilayer synthetic networks, we test MTCOV’s ability to detect communities
on synthetic single-layer networks, using the approach proposed by Newman and Clauset[27], where they generate
synthetic networks with known community structure embedded within them. Networks are generated using the
stochastic block model[46, 53], with N = 1000 nodes and C = 2 non-overlapping communities of equal size. Edge
probabilities are pin = cin/n and pout = cout/n, for within-group and between-group edges, respectively. The difference
cin− cout measures the strength of the community structure, when cin is much greater than cout the communities are
easy to detect from network structure alone, and it becomes harder when these two quantities are close. Discrete-
valued attributes are generated on nodes, which match the true community assignments of nodes a given fraction
of the times, and are instead chosen uniformly at random from the non-matching values otherwise. This allows to
control the correlation between attributes and community structure and hence test the algorithm’s ability to exploit
the extra information of varying quality. The match between attributes and planted communities varies between
0.5 and 0.9, the higher this value the higher the extent to which node attributes help predicting edges. In Fig. S1
we show the fraction of correctly classified nodes in terms of F1-score (results in terms of Jaccard are similar) for
such experiments. We notice first a clear pattern where all the methods increase their performance and reduce their
variance as the difference cin − cout gets bigger, going from a hard to an easy to detect regime. In the hard regime,
where community structure weakens, both MTCOV and NC remain robust in detecting the communities for scenarios
where attributes are correlated. However, MTCOV shows lower variance and has more stable results for high attribute
correlations. In addition, empirically we observe that NC does not reach converge in 19% of the trials, while MTCOV
only for the 13% of the times. CESNA always shows lower performances, probably penalized by the relative high
number of non classified examples which we also observe experimentally.

B. Single-layer real networks

a. The facebook ego-networks We consider the attributes Birthday (B), Hometown (H) and Location (L), rela-
tionship that potentially correlate with the community partitions. In addition, they have a reasonable number of
values, compared to other attributes whose proportions of missing values are too high. We take in consideration also
the sum by row: since we are assuming a multinomial distribution for the attribute, we ask for a sum by row equal to
1. As first step, we combine all the 10 ego networks merging both the edges and the covariates. In this way we double
check the real number of edges and the number of nodes. Moreover, we build complete design matrices for B, H and
L. They are used for retrieving the largest possible number of attributes for each node. However, we decide to work
with the ego networks separately, for having a clear classification of the ground truth. We build the input files using
the following procedure, where we consider only the nodes having at least one edge and the attribute. We obtain 30
networks: 3 for each ego network according to the attribute B, H or L; and for each combination of ego and attribute
we have different adjacency matrix A and ground truth circles. However, we analyse 21 networks because we have to
discard three ego networks (3437, 3980, 698) due to the null number of communities or to the small number of nodes
with ground truth.
b. American College Football We use the corrected version of the dataset[54], where among all they assign the

independent teams to a unique community label rather than assigning them a single community label as in the original
football dataset. In this way the number of communities given by the number of conferences is 19.
c. Political Blogs (polblogs) We remove the isolated vertices and self-loops. The ground-truth communities are

left/liberal, right/conservative, so C = 2.
For the analysis of these networks, we run CESNA with the default parameter α = 0.5 because their released

code does not allow to perform a cross-validation procedure on the scaling parameter. The facebook networks have
overlapping communities, while for the other two datasets we assume non-overlapping, according to the proposed
ground-truth. For facebook we consider the 21 ego networks as different iterations. For the other two, since both
MTCOV and NC are based on a EM algorithm which does not ensure to reach a global maximum, we perform 10
restarts of the algorithms with different initializations at random. Results are presented in the main manuscript.
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FIG. S1: Accuracy of classification for synthetic single-layer networks with two communities of equal size,
generated with the stochastic block model. Each plot shows results with a given match between metadata and
planted communities. The results are averaged over 10 independent trials and the bars represent the standard
deviation. The accuracy is measured with F1-score as similarity measure.
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