
Sustainable optimal transport in multilayer networks

Abdullahi Ibrahim,∗ Daniela Leite,† and Caterina De Bacco‡

Max Planck Institute for Intelligent Systems, Cyber Valley, Tübingen 72076, Germany

Traffic congestion is one of the major challenges faced by the transportation industry. While this
problem carries a high economical and environmental cost, the need for an efficient design of optimal
paths for passengers in multilayer network infrastructures is imperative. We consider an approach
based on optimal transport theory to route passengers preferably along layers that are more carbon
efficient than the road, e.g. rails. By analyzing the impact of this choice on performance, we find
that this approach reduces carbon emissions considerably, compared to shortest-path minimization.
Similarly, we find that this approach distributes traffic more homogeneously thus alleviating the
risk of traffic congestions. Our results shed light on the impact of distributing traffic flexibly across
layers guided by optimal transport theory.

I. INTRODUCTION

Traffic congestion is a major problem in the trans-
portation industry, with significant economic and envi-
ronmental repercussions. Impacts of the environmental
cost such as carbon emissions and other air pollutants
on public health can be sizable and need to be properly
studied [1]. Combining different transportation modali-
ties, as in multilayer networks, can mitigate congestion
and thus improve urban sustainability [2]. Modeling traf-
fic congestion on multilayer networks is crucial to investi-
gate the efficiency and cost of operating such infrastruc-
tures [3]. Addressing this problem requires extracting
what paths passengers take from source to destination,
an information that can then be used to analyze traffic
patterns. Many route extraction methods are based on
shortest-path minimization [4–7] or assignment strategy
[8]. However, shortest paths (i.e. selfish routing) might
not always be the optimal path in a congested network
[9–11], hence the need for coordinated traffic congestion.
In addition, empirical results have shown that passen-
gers may not always consider the shortest route [12, 13].
While efforts have been made to go beyond shortest-path
minimization using the cavity method or message-passing
algorithms [10, 14–17], these approaches are only valid in
single layer networks. Fewer models have been targeting
transport optimization in multilayer networks [3]. For
instance, [8] propose a flow-assignment strategy on mul-
tilayer networks, while [18] develop a recurrent algorithm
for communication networks.
Several works focus more on analyzing the properties
of passenger flows in multilayer networks, rather than
proposing models to extract trajectories, hence they con-
sider shortest-path optimization [5–7] or random walks
[4] to extract flows, thus necessarily influencing the re-
sults of subsequent analysis based on these strategies.

A principled and efficient approach for extracting opti-
mal paths of passengers in networks is optimal transport
(OT) theory [19–22]. This approach has been recently
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applied to multilayer networks [23], where the key idea is
to flexibly tune between different cost functions in each of
the different layers, thus capturing the specificity of each
type of infrastructure. For instance, a road network is
more sensitive to traffic congestion than a rail one, while
the infrastructure of a rail network may be more costly to
build. Our work builds from these ideas by adapting this
model to study and evaluate optimal paths on multilayer
networks under different scenarios. The goal of our work
is to study the trajectories of optimal paths and compare
them with those extracted from standard approaches re-
lying on shortest-path minimization to identify key prop-
erties that are better optimized if one considers the multi-
layer character of the network. Our main contribution is
threefold: First, we consider an optimal transport-based
approach to extract optimal paths for passengers in mul-
tilayer networks, contrarily to standard approaches based
on shortest-path minimization. Second, we propose a
variant of this OT-based method that interpolates be-
tween OT and shortest-path minimization. While the
extracted paths of the two OT-based models are longer
than those obtained by shortest-path minimization, the
rail layer is used by more passengers. Finally, we show
how using the optimal routes extracted by OT-based al-
gorithms, passengers are more likely to encounter little or
no traffic while emitting fewer amounts of CO2, leading
to a reduced environmental cost. Our empirical results
on synthetic and real data show the need for approaches
that exploit the multilayer nature of multimodal trans-
portation networks.

II. OPTIMAL TRANSPORT FOR TRAFFIC
DISTRIBUTION IN MULTILAYER NETWORKS

We consider a multilayer network a graph denoted as
G({Vα}α, {Eα}α, {Eαγ}αγ), where Vα, Eα and Eαγ denote
the set of nodes, edges in layer α and inter-layer edges
between layers α and γ; α = 1, . . . , L, where L is the
number of layers. We denote the number of nodes and
edges as N and E, and assume that edges have length
le > 0, which determines the cost of traveling through
them. To fix ideas, we consider the case of a 2-layer
network, but all results are valid for a higher number of
layers. We denote the two layers as α, γ and consider a
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road network for α and a rail network for γ, as explained
in detail in Sec. III. We show an example of this structure
in Fig. 1.

α γ

FIG. 1. Multilayer structure with Nα = 15 and Nγ = 4.
The network edges are represented in continuous lines (ma-
genta and brown) and the two-edge path in dashed-lines. The
thicker magenta nodes represent stations belonging to both
layers.

We consider passengers traveling through the networks
and distinguish them by their origin and destination
(traffic demands) stations (oi, ti), where oi, ti ∈ V =
∪αVα. We denote as S = {(oi, ti)} the set of all origin-
destination pairs, and |S| = M as their number.

We briefly describe the model of [23] to find optimal
paths in multilayer networks using optimal transport the-
ory. It considers two main quantities on network edges:
fluxes Fe of passengers traveling through edge e and con-
ductivities µe determining Fe passing through an edge
e. To keep track of the various routes that passengers
have, they consider a multi-commodity approach [22, 24],
by distinguishing passengers based on their entry sta-
tion i ∈ S. With this approach, the flux Fe is an M -
dimensional vector, where entries F ie denote the flux of
passengers of type i traveling on edge e. We assume the
fluxes are determined by pressure potentials piu and piv
defined on nodes as follow:

F ie :=
µe
le

(
piu − piv

)
, e = (u, v) , (1)

where le is the length of edge e. Kirchhoff’s law is im-
posed on network nodes to properly enforce mass conser-
vation. Finally, the dynamics assumes that the conduc-
tivity µe depends on flux Fe as follows:

µ̇e = µ
βqe
e

∑
a∈S(pau − pav)2

l2e
− µe, ∀e ∈ E , (2)

where qe encodes the layer that the edge e belongs to.
The parameter 0 < βqe < 2 determines the type of op-
timal transport problem one aims to solve: 0 < βqe < 1
penalizes traffic congestion; 1 < βqe < 2 encourages
path consolidation into few highways; while βqe = 1
is shortest-path like. Interpreting the conductivities as
quantities proportional to the size of an edge, this dy-
namics enforces a feedback mechanism such that the edge

size increases if the flux through that edge increases, and
it decreases otherwise.

It can be shown [22, 23] that the stationary solutions of
Eq. (2) minimize the multilayer transport cost function:

Jβ =

L∑
α=1

∑
e∈Eα

le||Fe||Γ(βα)
2 , (3)

where Γ(βα) = 2(2−βα)/(3−βα) for all α and the 2-norm
is calculated over the M entries of each Fe. Intuitively,
solving the system of Eqs. (1) and (2) and Kirchhoff’s
law is equivalent to finding the optimal trajectories of
passengers in a multilayer network, where optimality is
given with respect to the transport cost in Eq. (3). We
refer to this OT-based algorithm as MultiOT.

II.1. MultiOTsp: interpolating between OT and
shortest-path minimization

The paths extracted by MultiOT will encourage path
consolidation along with the rail network and traffic min-
imization on the road one. Empirically, we observe that
this model tends to distribute passengers of the same type
(i.e. same origin and destination) along various routes, as
shown in Fig. 2. While most of these passengers take the
shortest among these routes, some distribute on longer
ones to prevent traffic congestion. This suggests an alter-
native algorithm that interpolates between MultiOT and
shortest-path minimization to select only the main rele-
vant routes for each origin-destination pair among those
extracted by MultiOT. This can be done by inputting
the solution of MultiOT for each passenger type i into
a weighted shortest-path algorithm with edge weights
we = le/|F ie |, where the fluxes Fe are those extracted
from MultiOT. All the passengers of type i are then
routed along the output path. We call this algorithm
MultiOTsp and show a pseudo-code in Algorithm 1. The
paths selected by MultiOTsp strongly rely on how the
fluxes are selected in the first place to determine the
weights we. As the Fe are calculated by considering
all the passengers simultaneously (using MultiOT), the
final optimal trajectories of MultiOTsp are significantly
distinct from those obtained by shortest-path minimiza-
tion, which are independent from the surrounding envi-
ronment. We show an example of this in Fig. 2.

Algorithm 1 MultiOTsp

Input Graph G(V,E,W ), set S of origin-destination pairs,
β = (β1, . . . , βL)

Output Fluxes {Fe}e
1: function MultiOTsp(G,S, β)
2: {Fe}e ← MultiOT(G,S, β)
3: for i = 1, . . . ,M do
4:

{
F ie

}
e
← weighted Dijkstra(G,S, w) with we =

le/|F ie |
5: end for
6: Fe = (F 1

e , . . . , F
M
e ), ∀ e

7: end function
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FIG. 2. Example of paths from source (green node) to sink
(magenta node) for the three algorithms. Blue and red edges
denote the road and rail layers, respectively. Edge width is
proportional to the amount of passengers traveling through it.
We set p = 0.2, implying that the majority of the passengers
are directed towards a central node; βα = 0.5 and βγ = 1.9.

In the following, we study the trajectories of opti-
mal paths extracted by the three approaches: MultiOT,
MultiOTsp and shortest-path minimization (SP). We use
the implementation in [25] for MultiOT, while for SP we
use Dijkstra algorithm [26].

III. EMPIRICAL RESULTS

To investigate relevant properties of the optimal paths
extracted by the different algorithms, we simulate a vari-
ety of realistic traffic scenarios. Specifically, we generate
a dataset of synthetic 2-layer planar networks, where α
simulates a road network and γ simulates a rail network
(e.g. tram). The layer α is constructed by randomly
placing N nodes in [0, 1] × [0, 1], and extracting its De-
launay triangulation [27]. We then select a subset of
nodes to build the layer γ with an analogous procedure.
In our simulations we set Nα = 300 and Nγ = 60. We
extract 20 different networks and 100 random samples
of origin-destination pairs for each of them, for a total
of 2000 realizations for each parameters’ configuration.
With this, we aim at capturing different transportation
scenarios in the two layers, as rail networks are less sub-
ject to traffic congestion but more costly to build, while
we can state the opposite for road networks. MultiOT

(and thus MultiOTsp) can capture these differences by
suitably tuning β in each layer: to penalize traffic con-
gestion in the road layer we set βα = 0.5 and vary βγ
in 0 < βγ < 2 to study various scenarios. Origin and
destination pairs are generated by considering a rewiring
probability p = [0, 1] on passengers direction towards a
central node, with p = 0.0 corresponding to having a
monocentric destination where all passengers move to-
wards a central node and p = 1.0 corresponding to se-
lecting all passengers’ destination at random. We con-
sider p = {0.2, 0.5, 0.8}, but show results for p = 0.5,
as the qualitative behavior is similar as for the others,
see Appendix A. These settings exhibit three important
properties of the OT-based algorithms.

FIG. 3. Average total path length ratio. We show the ratio of
the average total path length to the one extracted from SP.
We set p = 0.5, βα = 0.5 and vary 0 < βγ < 2. The results
are averaged over 20 different network realizations with 100
randomly selected origin-destination pairs for each network
realization. The markers and error bars are averages and
standard deviations.

IV. LONGER LENGTHS BUT HIGHER RAIL
NETWORK USAGE

Shortest-path optimization is optimized for minimizing
the total path length taken by passengers, hence we ex-
pect MultiOT and MultiOTsp to underperform SP on this
task. In fact, the performance of OT-based algorithms is
expected to decrease as βγ increases, as shown in Fig. 3
by the average path length 〈 l 〉 = 1

M

∑
e∈E le||Fe||1 over

the one obtained from a shortest-path algorithm.

This is expected given that higher βγ encourages more
traffic to be routed towards the rail network at the cost of
increased distance to cover, as the rail network has fewer
and more distant nodes to reach than a road network. We
then measure how passengers are distributed in the two
layers by defining a coupling coefficient, a known concept
to describe how well two layers are linked [6]. We define:

λ =
1

M

∑
i∈S

( ∑
e∈Eγ |F

i
e |∑

e∈Eα∪Eγ |F
i
e |

)
, (4)

where the numerator inside brackets contains only the
flux in the rail layer so we can distinguish how many
passenger types effectively use that layer in their trajec-
tories. This definition is valid for 2-layer networks, as
the empirical networks studied here. However, one can
appropriately generalize it for networks with more than
two layers. The usage of the rail layer monotonically in-
creases for both OT-based algorithms, as shown in Fig. 4,
with MultiOTsp reaching higher usage values. This sug-
gests that the shortest-path routes selected from the pos-
sible paths output by MultiOT are made of a significant
amount of rail edges. This also shows that the raw solu-
tions output of MultiOT consider paths more distributed
across the road layer, as qualitatively observed in Fig. 2.
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FIG. 4. Coupling between layers. We show the coupling co-
efficient as defined in Eq. (4). All other settings remain the
same as in Fig. 3.

V. MULTILAYER OPTIMIZATION CAN
DECREASE CARBON CONSUMPTION

As more passengers take longer paths while being en-
couraged to use the rail network, they also consume less
carbon per unit of length. The question is whether the
increased length can be properly compensated by the de-
crease in carbon consumption. We tested this on the
same paths extracted to plot Fig. 3 by measuring the
average CO2 consumption per passenger as:

〈CO2 〉 =
1

M

∑
e∈E

rqe le||Fe||1 , (5)

where rα is the carbon emission rate in layer α. This
has a dimension of unit of mass (e.g. g) per passen-
ger per unit of length (e.g. pkm). For instance, a
bus on average generates 101.87g/pkm [28] while a train
28.39g/pkm [29]. Hence, defining r1 the rate of the road
layer and considering buses traveling on it, we can set
r2 = r1 28.39/101.87 = 0.28 r1. These values can be
changed accordingly with more specific values if a traffic
manager has precise statistics of vehicles’ types traveling
on the network. By leveraging optimal transport with a
bias towards shortest paths, MultiOTsp is able to decrease
the most carbon consumption compared to SP, measured
by the ratio of its 〈CO2 〉 over that produced by SP. A
minimum is reached for 1.1 ≤ βγ ≤ 1.5 where MultiOTsp

produces 25% fewer emissions than a shortest-path rout-
ing algorithm, as shown in Fig. 5. This important result
is a consequence of flexibly tuning the cost to be opti-
mized in each layer, as allowed by β in Eq. (3). In par-
ticular, βγ > 1 encourages paths to consolidate on the
rail layer, while βα = 0.5 controls for traffic congestion
on the road one. The fact that the minimum consump-
tion of MultiOTsp has not been realized at the highest
value βγ = 1.9, where the paths are consolidated into
few rail routes the most, further suggests that there is
a trade-off between keeping the path lengths short while
directing more passengers towards the rail layer. In fact,

FIG. 5. Carbon emission ratio. We show the ratio of the
average carbon emissions as defined in Eq. (5) to the one
obtained by SP. All other settings remain the same as in
Fig. 3.

at βγ = 1.9, as the number of passengers redirected to-
wards the second layer increases, they also have to take
longer routes, thus emitting more carbon. A value of
β = 1.3 results in a nice tradeoff between these two com-
peting behaviors in terms of carbon emission. On the
contrary, MultiOT shows a monotonic decreasing behav-
ior with a minimum reached at β = 1.9, but still higher
than that emitted by SP. This is a consequence of the
higher number of possible paths that passengers can take
as routed by MultiOT, which are by default longer than
those obtained by MultiOTspand use more edges of the
road layer. As a consequence, the longer length does not
seem to justify the higher usage of the rail layer.

VI. TRAFFIC CONGESTION

All the results of the previous section were interpreted
with the assumption that the flow of passengers is regu-
lar, even on high-traffic edges. Instead, if we account for
traffic to slow down the flow on edges with a high density
of travelers, those vehicles emit more carbon while they
keep their engines on for longer. The routes suggested by
MultiOT are less sensitive to this, hence we also expect
a lower carbon emission than that shown in Fig. 5 when
accounting for traffic. We thus measure traffic load on
edges as

Te =
1

n
||Fe||1 , (6)

where n is the total number of passengers and measures
the Gini coefficient Gini(Te) ∈ [0, 1] as a global network
metric of inequality of how traffic is distributed on the
network [30], with a Gini close to 1 meaning high in-
equality in flow assignment along edges. As the road
layer is the one more sensitive to potential traffic bottle-
necks, we consider only the traffic on road edges and de-

note with Gini(T
(α)
e ) the Gini coefficient calculated using

only e ∈ Eα. As expected, MultiOT has more balanced
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FIG. 6. Traffic distribution. Top) Gini coefficient of the traffic
on the road layer α. Bottom) optimal trajectories. Edge
widths are proportional to ||Fe||1 averaged over 10 samples of
origin-destination configurations; p = 0.5, βα = 0.5.

traffic than the other two algorithms, as shown in Fig. 6.
While congestion increases with βγ , even at the maxi-
mum β = 1.9 the Gini coefficient is lower than that of
SP. The reason for this increase is that paths consolidate
more on those fewer road edges that allow connection
to the rail layer, as can be seen on the example optimal
routes in Fig. 6, a behaviour also observed in previous
studies [31, 32]. This is exacerbated in MultiOTsp, as
one can notice that central road edges are overly traf-
ficked when many passengers exit the rail to reach the
final destination in the center. This also causes the Gini
coefficient of MultiOTsp to be higher than that of SP. In
other words, few central edges cause most of the traffic
for MultiOTsp. This can be partially alleviated by in-
creasing p towards 1 as fewer destinations are directed
towards the network center, although this may become
an unrealistic assumption in urban scenarios. Alterna-
tively, one can simply add rail stations in the center, so
that passengers do not have to commute one extra mile
to reach their final destination, a scenario that we explore
below in the case of a real network.

FIG. 7. Carbon emissions on the Bordeaux network. Ratio
of the average carbon emission over that of SP. Here we set
p = 0.2, thus favoring monocentric destinations.

VII. REAL MULTILAYER NETWORK

Next, we examine these properties on a real 2-layer
network of the city of Bordeaux [33], where α and γ rep-
resent the bus and tram networks, respectively. Similar
to the synthetic network, we compare the performances
of OT-based algorithms with SP on this network. We
set p = 0.2 to consider the situation where the majority
of passengers are directed towards the city center, a cen-
tral node coinciding with a tram station, and extract 100
realizations of origin-destination pairs.

We find that MultiOTsp produces 25% fewer carbon
emissions than SP for 1.1 ≤ βγ ≤ 1.5, as shown in Fig. 7,
similar to what observed on synthetic networks. MultiOT

has a minimum at βγ = 1.9 but the emissions are higher
than SP. We argue that also in this case this is due to the
assumption that the flow of vehicles is smoothly moving,
with no traffic congestion causing velocity to decrease,
and thus emissions to increase nearby traffic bottlenecks.
To assess this hypothesis we investigate the distribution
of fluxes on the road layer by measuring the traffic Te on
edges in layer α. We find that indeed MultiOT has path
trajectories more homogeneously distributed across the
road layer as measured by the Gini coefficient plotted in
Fig. 9 along with an example solution, potentially low-
ering the number of congestions. As we can see from an
example solution in the same figure, the two OT-based
variants distribute passengers in higher amounts along
the tram network, thus lowering the road’s usage, while
SP makes use of the tram mainly in the proximity of the
central node. We can further notice how MultiOT uses
with higher intensity the road than MultiOTsp, but the
road edges have lower traffic than those obtained by SP.
As for MultiOTsp, the road edges with the highest traffic
are those nearby tram stations, like those in the upper
left corner in the figure.

To better quantify the potential impact of traffic con-
gestion as a proxy for the potential increase in CO2 emis-
sion we consider a measure of transport cost used before
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FIG. 8. Transport cost on the road layer α of Bordeaux net-
work. The cost is defined as in Eq. (7); here p = 0.2.

in similar problems [14, 15] and defined as

Jα =
∑
e∈Eα

le||Fe||21 , (7)

where the exponent 2 penalizes for traffic. This is differ-
ent from the definition of Eq. (3), which accounted for
the edges in all layers and with different exponents β.
As seen in Fig. 8, both OT-based algorithms outperform
SP as βγ increases, meaning that passengers traveling on
paths generated by the OT-based algorithms will gener-
ally record lower road traffic congestions compared with
the paths extracted by SP. Assuming that velocity de-
creases along congested edges, we conjecture that this
would result in MultiOT having lower carbon emissions
than SP.

VIII. DISCUSSION & CONCLUSION

Designing and extracting optimal passenger flows in
a transportation network is crucial for reducing traffic
congestion and environmental costs. Methods based on
shortest-path optimization are optimal in terms of reduc-
ing the average shortest path length to reach destination,
but they may fail in terms of other relevant transporta-
tion metrics. In addition, passengers do not always follow
the shortest route [12], hence the need for alternative ap-
proaches to extract path trajectories and investigate their
properties in multilayer networks. We present two mod-
els based on optimal transport theory that can flexibly
tune the amount of traffic routed in the different layers to
encourage usage of rail networks while reducing traffic on
the road one. As a result, optimal trajectories extracted
with these methods significantly decrease the amount of

carbon emissions compared to shortest-path minimiza-
tion, while also being more robust to traffic congestions.
In particular, we found that MultiOTsp, by interpolat-
ing between optimal transport and shortest-path mini-
mization, can achieve the lowest amount of carbon emis-
sions under the hypothesis of smooth flow of passengers
in a network. Instead, MultiOT, based purely on optimal
transport, distributes paths more homogeneously, thus
being potentially more robust against increased carbon
emissions when accounting for passengers’ flow slowing
down along traffic bottlenecks. This can be tested quan-
titatively in real scenarios by having access to empiri-
cal data of different velocities during traffic congestion,
along with detailed velocity limits imposed by regulations
in different parts of the network. One could potentially
compare the theoretical results with the empirical ones
observed from real data as in [34].
In general, we show that models based on optimal trans-
port can be used to design optimal routes for passengers
in a multilayer network and investigate scenarios beyond
those obtained by using standard shortest-path algo-
rithms. In this work, we assumed fixed origin-destination
pairs, but one can further generalize this analysis by con-
sidering dynamical traffic demands that change in time.
This would require to suitably adapt the models studied
in this work to account for this, for instance borrowing
ideas from [35–39]. Similarly, we did not explore here
the possibility of traffic diversions due to road blockages
or changing conditions in the network structure [40–43].
Studying the robustness of the methods investigated in
this work to these scenarios would be an interesting sub-
ject for future work. Finally, it would be interesting to
investigate more complex scenarios with more than two
layers, possibly on a larger scale than that of a unique
urban scenario. To facilitate future analysis, we provide
an open source implementation of our code at [25].
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Appendix A: Additional results varying p

We set p = {0.2, 0.5, 0.8} to capture different traffic
demand scenarios, where p = 0.2 and p = 0.8 correspond
to having the majority and minority of the passengers
with a monocentric destination. We show in Fig. 10 the
performance of the algorithms in terms of the same met-
rics investigated in the main manuscript. All displayed
results have the same settings described in Sec. III.
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