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Abstract

The use of patent citation networks as research tools is becoming increasingly

commonplace in the field of innovation studies. However, these networks rarely

consider the contexts in which these citations are generated and are generally re-

stricted to a single jurisdiction. Here, we propose and explore the use of a multilayer

network framework that can naturally incorporate citation metadata and stretch

across jurisdictions, allowing for a complete view of the global technological land-

scape that is accessible through patent data. Taking a conservative approach that

links citation network layers through triadic patent families, we first observe that

these layers contain complementary, rather than redundant, information about tech-

nological relationships. To probe the nature of this complementarity, we extract

network communities from both the multilayer network and analogous single-layer

networks, then directly compare their technological composition with established

technological similarity networks. We find that while technologies are more splin-

tered across communities in the multilayer case, the extracted communities match

much more closely the established networks. We conclude that by capturing citation

context, a multilayer representation of patent citation networks is, conceptually and

empirically, better able to capture the significant nuance that exists in real tech-

nological relationships when compared to traditional, single-layer approaches. We

suggest future avenues of research that take advantage of novel computational tools

designed for use with multilayer networks.
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1 Introduction

Patent citations have found successful application in a wide swathe of contexts, from

understanding knowledge spillovers (Jaffe et al., 1993, Sorenson et al., 2006, Jaffe and

de Rassenfosse, 2017, Berkes and Gaetani, 2021) to the characterization of technological

change (Fleming, 2001, Choi and Park, 2009, Huenteler et al., 2016). The vast majority

of this research is conducted using only patent data from a single jurisdiction and often

ignores important citation context. However, as innovation and patent filings become

increasingly global endeavours (Fink et al., 2016, Danguy, 2017), there are many situa-

tions where it is important to think of ‘the patent system’ as a set of quasi-coordinated

processes operating across jurisdictional boundaries (Petit et al., 2021).

This coordination is desirable because the same invention can be patented in multiple

jurisdictions; there are clear efficiency gains to be made if information discovered or pro-

duced during the patent prosecution process can be shared between jurisdictions (Chun,

2011). Patent families arise because these related applications, which simultaneously

progress through multiple patent offices, are legally linked through their first filing. The

Paris Convention1 allows applicants to apply in multiple jurisdictions and claim the filing

date of the first application, known as the priority date, as the effective filing date for

subsequent applications (provided these occur within 12 months of the priority date).

Information sharing between offices creates, by design, some redundancy in the informa-

tion generated for family members across offices, but not enough that a complete picture

can be pieced together from a single jurisdiction’s data. The existence of patent families

provides the opportunity to form the most complete set of information about a partic-

ular invention that can be obtained from patent data and allows us to link metadata

across jurisdictional boundaries (Nakamura et al., 2015). In this work, we demonstrate

the utility of these linkages in the context of patent citation networks.

The family-level view would suggest that only using data from a single jurisdiction

leaves a lot of potentially relevant information unexamined (Bakker et al., 2016). In the

more and more common scenario where multiple family members exist across multiple

jurisdictions, citations will often only be made to one family member.2 As such, the cita-

tion network that is obtained from any single jurisdiction necessarily represents a subset

of the complete network for the set of inventions under examination. While information

sharing between offices will increase the amount of overlap between these networks, it

does not make family-level analyses redundant, for two reasons. First, the amount of

information sharing, and the modes for doing so, between patent offices has changed

significantly in recent years.3 In particular, advances in information technology allow

1Paris Convention for the Protection of Industrial Property (1883).
2Search reports will often list equivalents of the prior art that is cited, however, this additional

information is not explicitly included in the associated data sets.
3See, e.g., https://www.wipo.int/case/en/.
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patent offices to coordinate much more effectively than they did 20 years ago. Yet, some

patents filed 20 years ago are only expiring now, so these patents can still be important

sources of information when studying contemporary innovation. Second, many patents

are not filed in multiple offices, and some applicants only select a few strategically im-

portant jurisdictions where they would like to protect their intellectual property. That

is, the nodes and links in the citation networks of each jurisdiction are unique, and so

each network contains a huge amount of potentially pertinent information that is unique

to that jurisdiction. In the empirical sections of this work, we take a very conservative

approach and only consider nodes that are shared across jurisdictions, as described in

detail in Section 2.3.

Even for shared nodes (defined here as patents granted in multiple jurisdictions), how-

ever, the sets and types of citations made by each patent office can differ greatly, as shown

in Figure 1. The primary reason for this disagreement is that different jurisdictions abide

by different legal guidelines that describe when and how citations should be made. These

sets of guidelines are not without strong similarities, however, and a careful reading offers

pathways towards sensible aggregation or comparison of these sets of citations (Higham

and Yoshioka-Kobayashi, 2022). This has become particularly feasible in recent times as

more and more offices now provide metadata about citation context, such as whether the

cited patent was so similar to the application as to render the latter unpatentable, or

whether the cited patent was added to simply define the state of the art. A secondary

reason for disagreement between jurisdictions is, in fact, a commonality: examiners in all

jurisdictions are humans with limited time to examine any particular patent (see, e.g.,

Frakes and Wasserman, 2017). Often, it is simply not possible to find every relevant piece

of prior art, particularly when language barriers are taken into consideration. Indeed,

in combination with simple differences of opinion, this limitation means it is unlikely

that two examiners in the same patent office would find exactly the same set of prior

art (Wada, 2016). Therefore, using family-level information gives us the search result

of more examiner-hours as well as the multiple opinions of what should be considered

relevant prior art.

As citations made by different offices are made according to different sets of guide-

lines, treating these citations as equally informational may lead to misleading results.

Indeed, some suggest that citations of the same type have become less informative over

time (Kuhn et al., 2020). It is therefore important to aggregate family-level information

sensibly. We propose that a multilayer network framework provides a natural repre-

sentation of the patent citation network that readily incorporates differences in citation

type. After all, multiple networks anchored by common nodes is the very definition of a

multilayer network (De Domenico et al., 2013, Kivelä et al., 2014, Porter, 2018).

Within the multilayer framework, described in more detail for our chosen context in

Section 2.2, each layer of the network represents a single link type, each node represents
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a patent family (which may exist in multiple layers), and each link represents a citation

between families (of the type defined by the layer). As such, the global patent citation

network is an inherently multilayer system; no abstraction is required. Further, this

framework is particularly flexible. For example, layers can represent jurisdictions, and

links within each jurisdictional layer can represent the citations found on the front page(s)

of the family member(s) granted by that jurisdiction. From this point, it is possible to

layer as many jurisdictions as desired onto the network, provided there are family linkages

existing between the layers. It is also possible to split these layers further, according to

citation metadata that inform us of the reason for, or source of, a particular citation.

This flexibility is particularly valuable when certain types of citations are irrelevant, or

may even be considered pure noise, with respect to a particular research question. For

example, one studying knowledge flow within a multilayer framework may not wish to

consider citations discovered by the examiner, and may even want to add an additional

layer for citations found in the patent specification (Verluise et al., 2020).

However, it is not clear, a priori, whether a multilayer framework adds any information

over and above that which can be found in ‘flattened’ family citation networks wherein

citation context is disregarded and only link existence is examined (Nakamura et al.,

2015). Thus, in order for the multilayer framework to be feasible as a research tool, it

is important to first demonstrate a significant gain in information content relative to the

flattened, global family citation network, or even the more commonly-used jurisdictionally

restricted citation networks. To this end, we explore the information content of the triadic

patent family network, wherein all layers contain the same set of nodes. This set consists

of families containing at least one member granted in each of the triadic patent offices:

the United States Patent and Trademark Office (USPTO), the European Patent Office

(EPO), and the Japan Patent Office (JPO). The triadic offices have historically granted

the majority of patents globally and contain rich and accessible citation information.

Specifics about the data used in this work can be found in Section 2.3.

In this work, we first construct a multilayer family-family triadic citation network,

wherein layers can be separated by jurisdiction and citation context (such as whether

the citation was added by an applicant or examiner). In practice, the appropriate set of

contexts can be selected based on the use-case; in this work, the additional context we

consider is whether a citation was likely to have been found by the examiner or by the

applicant (which is not always explicit), as we expect the differing motivations for cita-

tion between these groups affect the nature of the technological relationships reflected

by these citations. We then conduct an interdependence analysis to check for redun-

dancy of information content between the layers, finding that significant complementary

information exists between jurisdictions. A community detection procedure is then con-

ducted on the multilayer network and two comparison networks: the flattened multilayer

network containing the same set of links but without information about jurisdiction or
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citation context, and the US-only subset of the citation network, also flattened. The

former comparison tests the role of citation context, while the latter is included as the

most commonly used patent citation network in prior research. We observe, graphically,

nuanced differences in inferred community structure between the multilayer network and

the comparison networks.

To add colour to these differences, we examine the relationships between inferred com-

munity partitions and the technology classes of the families that comprise them. For the

multilayer network communities and those of the two flattened comparison networks, we

project the bipartite community-class network onto the class nodes and directly compare

these projections with established class-class networks (co-classification and inter-class

citation linkage) with known-node-correspondence methods. We are also able to directly

measure the diversity of communities, and the spread of classes between communities to

inform our interpretation of the direct network comparisons.

When compared to the other two networks, we find that the multilayer case produces

communities that more closely reflect the known technological relationships implied by the

established class-class networks, at both micro- and meso-scales. Further, while techno-

logical classes are more splintered across communities in the multilayer case, the internal

diversity of communities is lower than the comparison networks once we account for the

known technological similarity of classes. These results suggest that, even within our

conservative empirical framework, citation context is an important source of information

about the nature and importance of the particular technological relationships codified

by citation linkages, and that examination of multilayer citation networks using novel

computational techniques is an exciting and relevant avenue for future research.

The rest of the paper is structured as follows. Section 2 introduces both patent

families and multilayer networks and discusses how the former naturally forms the latter

in the context of citation networks. Section 2.3 describes the data we use in this work,

how this forms the multilayer networks and why specific subsets of families and citations

are selected for analysis. Section 3 describes the empirical procedures that we use to

test and compare the information content of the multilayer citation network relative to

single-layer networks and describes the results obtained. Lastly, Section 4 concludes and

discusses the limitations and extensions of this research.

2 Multilayer patent networks

2.1 Patent Families

The rights bestowed by patents are only enforceable in the jurisdiction in which the

patent was granted. To obtain these rights in more than one jurisdiction, an applicant

first files in a single jurisdiction (often their local patent office), starting the clock on the
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period during which they can file for the same invention in other jurisdictions. For the

next 12 months, all subsequent filings can ‘claim priority’ from this initial application

and inherit the latter’s filing date as its own for the purposes of examination (provided

the same content is covered in the application).

There are two primary modes through which an invention can claim priority from an

earlier application: the Paris Convention and the Patent Cooperation Treaty (PCT). The

former lays down the guidelines for the treatment of foreign patent applications among the

contracting parties, including the time limit on priority claims as described above. The

latter, for our purposes here, is effectively an attempt to streamline and harmonise the

process of patenting in multiple jurisdictions.4 This process does not result in a patent,

but rather a preliminary prior art search report, and allows the applicant to nominate

the jurisdictions to which they would like to apply for a patent without having to apply

at each office separately. Priority can be claimed from a PCT filing, and PCT filings can

themselves claim priority from an earlier filing at a local office.

After a patent application has reached a local office, the applicant may want to fine-

tune their claims or even be asked to split the described invention into two separate patent

applications.5 The inventor is not able to disclose new information during this process,

and thus the claims made by the ‘new version’ of the application must be contained

within the scope of the initial disclosure. These subsequent filings may claim the priority

date of the initial filings and are referred to as ‘continuing applications’.

Patent families, in general, link patents and applications through their priority fil-

ing. The resulting ‘family trees’ can be complex and, as such, several types of families

exist (Martinez, 2010, Mart́ınez, 2011). ‘Simple’ patent families (as defined by the EPO

for their DOCDB database) each consist of a set of patents and applications that are all

linked to the same priority filing. This type of family is the one on which we focus in

this work, and we will henceforth drop ‘simple’. As such, families can be made up of sets

of documents from several jurisdictions, each of which may contain multiple documents.

Other families may only consist of a single application in a single jurisdiction.

Families are the unit of analysis for the current work for two reasons. First, they

generally align with what one usually thinks of as a single ‘invention’ (Mart́ınez, 2011)

and it is the relationships between inventions that we usually aim to capture with citation

data. Second, they link inventions across jurisdictions, and therefore allow the alignment

of jurisdiction-specific citation networks and, therefore, the introduction of the multilayer

network as a potentially useful analytical, conceptual, and mathematical tool to study

technological relationships.

From the perspective of data availability, detail, and volume, the obvious choice of

data set for testing the utility of the multilayer framework are those patents granted

4https://www.wipo.int/pct/en/.
5See, e.g., Paris Convention for the Protection of Industrial Property (1883), Article 4G.
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by the three (historically) largest patent offices, also known as the triadic offices: the

USPTO, EPO, and JPO. Further, we wish to take a particularly conservative empirical

approach to these initial explorations of the multilayer citation network. To do this, we

only consider patent families that have granted members in all layers of interest (‘triadic

families’) and only consider citations among these families.6

Theoretically, each office examining these triadic applications has access to the same

information regarding prior art, and they share much of what they find with the other two

offices, directly or indirectly (Wada, 2020, Petit et al., 2021). For this reason, granted

members have all had the same opportunities to link to other (older) families in each

layer, maximising potential redundancies between layers in the citation network. The

exclusion of families that are not triadic, therefore, is why we think of this analysis as

likely to produce very conservative results when compared to those that may be obtained

for a network without such exclusions.

We also note triadic patent families are often used as a binary indication of a ‘high-

quality’ invention (de Rassenfosse and van Pottelsberghe, 2009, Tahmooresnejad and

Beaudry, 2019); after all, the applicants thought it was worth the time and money to

patent their invention in three of the largest markets in the world. By this logic, our

multilayer network consists exclusively of ‘high-quality’ patent families7 and excludes

much controversial subject matter that are not universally patentable (Biddinger, 2000).

A simplified diagram of a multilayer network of citations between triadic families is

shown in Figure 1, with full details of the families included in this example described

in Appendix C. Note that the multilayer network that we analyse in this paper treats

sub-layers, such as whether a citation has been used in a rejection decision (shown in

red in Figure 1), as distinct layers. This results in seven layers in total, as the EPO also

provides information about whether a citation originated from the international search

report (conducted outside the EPO) or the local search report.

2.2 Multilayer networks

Multilayer networks have received particular attention in the past decade (De Domenico

et al., 2013, Kivelä et al., 2014, Boccaletti et al., 2014, Cimini et al., 2019), and the

development of mathematical and computational tools for their analysis, as well as their

timely application, remains a very active field of research across many domains (Gallotti

et al., 2016, Vaiana and Muldoon, 2020, Harvey et al., 2021, Yuvaraj et al., 2021, van der

Marel et al., 2021). In this work, we not only suggest that patent citation networks are

naturally multilayered, but aim to introduce the multilayer framework to the innovation

studies community to promote the timely application of novel computational tools that

6The applicants to these offices, however, may be based outside these jurisdictions.
7Note that this is a very narrow view of patent quality. For a comprehensive discussion, refer to

Higham et al. (2021).
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Figure 1: Exemplar subset of the multilayer patent citation network. A mul-
tilayer representation of a typical subset of the inter-family patent citation network we
consider in this work. Nodes and links comprise the multilayer ego network of patent
family A, the USPTO equivalent of which is “Power source apparatus” (US6819081B2),
initially filed in January 2002 by Sanyo Electric Co., Ltd. at the JPO. Each layer repre-
sents the inter-family citations made by a different patent office, and red links are those
used to justify a (non-final) rejection of the application that was examined in that layer.
All data represented here is subject to the restrictions described in Section 2.3 and is,
therefore, an extremely simplified version of the complete ego network. Details of the
families represented can be found in Appendix C.
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are currently being developed.

To date, the vast majority of the studies that explicitly place patent citation data

into a network setting use a single-layer framework (Von Wartburg et al., 2005, Valverde

et al., 2007, Clough et al., 2015, Nakamura et al., 2015, Funk and Owen-Smith, 2017,

Wu et al., 2019, Higham et al., 2019, Mariani et al., 2019). That is, there is only one

type of link (i.e., a citation) between nodes in the network. This approach often makes

practical sense, such as when one lacks citation metadata that may be used to distinguish

or ‘colour’ the links, or if only one link type is of interest. However, a multilayer network

framework is able to naturally incorporate citation metadata, if it exists, into the network

structure.8 As an analogy, let us consider the public transport network of a large city

8In a related work, also using triadic patents, Morrison et al. (2014) use a multiplex PageRank to
assess the centrality of technology classes where layers are defined by inventor location. However, citation
source and context are not considered.
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containing several different forms of transport, each with its own network of routes and

stations. There are usually many points of overlap between these network layers to allow

passengers to transfer between modes of public transport, such as a bus stop at a train

station. These transfer points link the different network layers together. From both

mathematical and computational perspectives, this kind of network is fundamentally

different from single-layered networks, particularly when the different layers are defined

by links with very different properties (Aleta et al., 2017, Ibrahim et al., 2021). In the

public transport context, these properties can be straightforward, such as speed, price,

comfort, or environmental harm, or more computationally complex, such as sensitivity

to link removal and amenability to rerouting (De Domenico et al., 2014).

In the domain of patent citation networks, each jurisdiction has a set of applications

and patents that each contain a set of citations made to other documents. Each of those

citations comes with context (Higham and Yoshioka-Kobayashi, 2022). This context can

be whether the prior art was discovered by the examiner, the justification for its addition

to the document, the relationship between the citing and citing firms, or any other citation

metadata that may be obtained or constructed. For many research questions that rely on

information derived from the citation network, this information is important to retain,

just as it is important to know whether two nodes in a transport network are connected

by a bus, an airplane, or a ferry.

At the same time, every patent is part of a family (even if there is only one member).

When families contain members filed in multiple jurisdictions, the citation networks as-

sociated with each jurisdiction can be linked, just as a bus may stop at a train station, or

a train may stop at an airport. Of course, patent applicants are under no obligation to

file for a patent on the same invention in multiple jurisdictions. That is, a node (patent

family) may not exist in all layers of the network. Not every bus stop is a train station,

nor vice versa. The full patent citation network is a true ‘multilayer’ network in this

sense. In this work, however, we focus on the subset of nodes that exist across all three

layers of interest (the triadic offices). The justifications for this choice are discussed in

Section 2.3. The network we define in this work, therefore, is a special case of a multilayer

network wherein the layers are node-aligned (Kivelä et al., 2014). Extensions of this work

to a more general multilayer framework are discussed in Section 4.

Multilayer networks share many characteristics of interest that are found in single-

layer networks; indeed, much of the early research on multilayer networks involved adapt-

ing concepts from single-layer networks to this new framework (Berlingerio et al., 2011,

Bródka et al., 2012, De Domenico et al., 2013, Battiston et al., 2014). For our purposes,

in order to demonstrate the utility of the multilayer framework, it is necessary to com-

pare the network properties derived in this setting to those obtained from the equivalent,

flattened single-layer network, wherein citation metadata is ignored (partially or wholly).

The domain within which we choose to explore differences between the multilayer
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and single-layer frameworks, in the patent citation context, is community detection. The

natural grouping of nodes is one of the characteristic features of real-world networks and

plays a significant role in describing the structure of the network at scales between node-

level and global-level network statistics (Wasserman et al., 1994, Newman and Girvan,

2004, Fortunato, 2010). Often, innovation researchers are interested in the composition

of, and interaction between, close-knit groups of meso-scale objects such as groupings of

similar technologies (Lee et al., 2015, Alstott et al., 2017, Balland and Rigby, 2017, Yan

and Luo, 2017, Mejia and Kajikawa, 2020), and the application of community detection

to the multilayer citation network leaves room for direct comparison between our results

and these objects that we usually work with. Lastly, community detection can be applied

to both multilayer and single-layer networks, which will allow for comparisons between

the resultant communities.

2.3 Data

The multilayer citation network we construct is generated by citations made by triadic

patents and only includes those made to and by triadic families. For the purposes of

the current work, triadic patents are patents granted by one of the triadic offices that

have family members, or equivalents, granted by the other two triadic offices. Triadic

families, on the other hand, will refer to the full set of documents belonging to a family

that contains triadic patents.9 These sets include both applications and patents and may

be filed at or granted by offices outside the three triadic offices (provided that they are

within a family containing triadic patents).

There are several reasons for choosing this subset of nodes and links to define our

network, beyond the aforementioned desire to be conservative in our empirical design.

The first is that we require well-defined layers. By restricting the citing patents to those

granted by the triadic offices, the links (and, therefore, network layers) are defined by

the citation context (e.g., the jurisdiction where it was made and the reason it was

added), which isn’t available for many offices. Second, restricting the cited families to

those that are also triadic means that there are no cross-layer citations, which significantly

simplifies the network from a mathematical perspective. For example, a US triadic patent

citing a pre-grant publication that was only filed at the Japan Patent Office would be

a cross-layer citation, as the latter node does not exist in the US layer. If, however,

this Japanese publication was part of a triadic patent family, we can ‘redirect’ this US-

originating citation to the US-granted family member, as this patent covers the same

9Note that this definition is slightly different to that used in previous work, notably Dernis and
Khan (2004). Until the year 2000, applications to the USPTO were not published, so it was generally
impossible to know whether equivalents were filed in all jurisdictions. This led to a slightly awkward
definition (families with equivalents granted by USPTO and applied to EPO and JPO) that was in wide
use until sufficient time had passed for USPTO application data to accumulate. A common definition
in use currently is those families with equivalents filed at the triadic offices; however, as US applications
do not list citations, we restrict this definition further to require a grant at each office.
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technical content, and the citation can remain within the US citation network layer

where it was generated. Third, all triadic offices provide detailed citation data. There is

no theoretical reason why citation network layers associated with other countries cannot

be added if the data exists, but we deemed the triadic offices to be the best starting

point to demonstrate the use of the multilayer framework due to their existing popularity

among both applicants and researchers.

In this work, we also wish to demonstrate the importance of citation source and con-

text. During the application and examination process, citations that reach the front

page of the patent may be added by one of several parties for a variety of reasons. One

problem inherent in this citation metadata is that different offices have different exami-

nation guidelines and legal frameworks that inform how prior art is cited (Higham and

Yoshioka-Kobayashi, 2022). Further, the way that these differences manifest themselves

in the metadata that researchers can access is not consistent across offices or, indeed,

across time. For some of the analyses in this work, we broadly group citations at each

office into two groups: those that were likely found by the examiner and those that were

likely found by the applicant. While these groups are far from perfect,10 we do so to

illustrate the flexibility of the multilayer network approach—the citations that comprise

each layer can be filtered based on the research purpose. This flexibility is discussed in

more detail in Section 4. One minor restriction that accompanies this approach is that

we require citation metadata to exist for all citing patents. The USPTO only started to

include this metadata for granted patents from the start of 2001, so the triadic families

we consider in this work are those for which the first US grant was in 2001 or later. All

families considered in this work have all of their triadic members granted before April

2020. A histogram of the priority dates of the families that comprise the networks we

consider in this work is displayed in Fig. 2.

Most of the data used in this work were obtained from Google Patent Public Datasets.11

However, noting that, at the time of data collection, that data was not complete for cita-

tions between Japanese publications (notably, Japanese patents citing published Japanese

applications), this data was supplemented by data supplied by the Intellectual Property

Institute’s Patent Database.12 We also make use of Cooperative Patent Classifications

(CPCs); for consistency, we assign each family the classifications associated with their first

US member, as determined by the USPTO. This data was obtained from PatentsView.13

To reduce the computational complexity associated with large networks, we prefer to

work with a subset of the whole patent family network that nonetheless resembles the

10This is particularly true for the JPO. However, there is suggestive evidence that applicant citations
are more likely to be background art than art that could lead to a rejection of the application (Okada
et al., 2018).

11https://tinyurl.com/googlepatentdata (accessed 25/10/2021).
12www.iip.or.jp/e/patentdb/index.html (accessed 25/10/2021).
13https://patentsview.org/ (accessed 25/10/2021).
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Figure 2: Family priority dates. A histogram of the priority dates of the triadic
families considered in this work, subject to the restrictions laid out in Section 2.3. All
families have their US member granted in 2001 or later, but the earliest filing date can
be considerably earlier.

structure of the whole. Using a set of obviously technologically related families such as

those in a specific technology class or filed by firms in a specific sector may not satisfy

this requirement, given the known differences in citation patterns across fields (Alcácer

et al., 2009, Higham et al., 2017). To remedy this, we choose the subset of patents

assigned to CPC class Y02: “technologies or applications for mitigation or adaptation

against climate change.” The Y02 class is always a secondary classification and can be

added to patent families from a broad set of technologies, from those aimed at reducing

drag on airplanes to those aimed at treating diseases whose impact may be exacerbated

by climate change (Veefkind et al., 2012, Haščič and Migotto, 2015). This class (and its

subclasses) are commonly used as filters to study patented technological developments

within specific domains related to both the mitigation of climate change, such as cleaner

transport (Aghion et al., 2016, Barbieri, 2016) and energy production (Sun et al., 2021,

Persoon et al., 2020), and our adaptation to the inevitable and wide-ranging environmen-

tal challenges we will face in the near future (Dechezleprêtre et al., 2020, Hötte et al.,

2021). As such, we believe this technology class comprises a suitable microcosm within

which we can effectively demonstrate the application of multilayer network methods to

patent citation networks.

The resulting data set consists of a well-defined set of citing families, their CPC

classifications, the citations they make,14 and the jurisdiction and context of each citation.

A description of the layers considered in this work (which can be aggregated for specific

empirical tests) can be found in Table 1.

14We exclude very rare citation types, such as those originating from third parties.
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Table 1: Layer descriptions. Descriptions of the layers considered in this work,
alongside their abbreviations and the number of links found within them. All layers
contain 22653 nodes, and there are a total of 63916 citations in the multilayer network
(MULTI) that is comprised of the layers described in the first seven rows. The last two
rows are single-layer networks obtained by flattening the two USPTO layers (US-AGG)
and all seven layers (ALL-AGG), respectively.

Layer Citing party Abbreviation Description Links

USPTO Examiner US-EXM Cited by examiner during
patent prosecution

15607

USPTO Applicant US-APP Cited by applicant through an
Information Disclosure State-
ment and unused by examiner

23145

EPO Applicant EP-APP Cited by applicant, in the
patent text or otherwise

4326

EPO Examiner EP-ISR Cited by examiner in an inter-
national search report

5732

EPO Examiner EP-SEA Cited by examiner in an EPO
search report

5206

JPO Examiner JP-REJ Cited by examiner as justifica-
tion for application rejection

4612

JPO Examiner JP-BCK Cited by examiner as back-
ground information

5288

USPTO All US-AGG Cited by anyone (USPTO
patents)

38752

All All ALL-AGG Cited by anyone (all triadic
patents)

63916

3 Methods and Results

3.1 Interdependence

Before a detailed examination into the kind of information that may be extracted from

the multilayer network that is not accessible when using a single layer, it is first important

to assess whether there is new information in the multilayer network at all. That is, if

there is a high level of redundancy between the information contained in each network

layer, then the case for using a multilayer framework is weakened. At the same time, if

the layers contain very different structural patterns, then a multilayer framework may not

be ideal, and more informative results may be obtained if they are treated as individual

single-layer networks instead.

One way of assessing these properties is by measuring the interdependence of each

layer, or set of layers, relative to the information that can be found elsewhere in the

network. Several measures of interdependence have been proposed in the past (Parshani
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et al., 2011, Morris and Barthelemy, 2012, Nicosia et al., 2013), many of which take a

random walk approach to the level of layer interdependence or ‘coupling’ of layers in the

network. In this work, at a high level, we are instead interested in the degree to which

the information contained in one network layer can inform us about the information

contained in another layer.

To this end, we employ the method introduced by De Bacco et al. (2017) and de-

scribed in detail for our case in Appendix A.2. This method is a link prediction exercise,

whereby a randomly-selected portion of the target layer or layers α have their link infor-

mation removed and the remaining information in the network may be used to predict

the existence of links. As a baseline, the remaining portion of the α is used as the train-

ing set, the receiver operating characteristic (ROC) curve is calculated, and the area

under this curve (AUC) is computed. We can then introduce sets of other layers, β, into

the training set, and compare results obtained by adding this information to those of

the baseline. If the predictive power (as measured by the AUC) of this augmented set

α + β is not significantly larger or smaller than the baseline predictive power, then β

does not contain useful information over and above that contained in α. If, however, we

note a significant increase in predictive power relative to the baseline, then β contains

complementary information that cannot be extracted from what remains of α.

Much information can be garnered from comparisons of the change in predictive power

when α and β are interchanged. For example, when the links in one layer are a subset of

links in another, then we expect the change in predictive power to be asymmetric when

we swap α and β — adding the subset to try to predict links in the full set will likely

produce worse results than if only the full set was used for training the model. The

information in the subset is redundant and could even mislead the model.

When two layers contain complementary information we would expect increases in

predictive power regardless of the layer comprising the test set. This complementarity

can arise in several ways, such as through similar community structure despite large dif-

ferences in the specific links that produce these structures. A significance decrease, on

the other hand, would indicate that β contains information that is irrelevant for the pre-

diction task and actually added noise; this could occur, for example, if the link generation

mechanisms were independent of the node properties, or were driven by different node

properties in different layers.

Figure 3 shows the results of the interdependence analysis for various α and β sets

in which we are interested. For graphical simplicity, we focus on the sublayers generated

by the USPTO and the complete JPO and EPO layers (where the latter two always

include all of their sublayers listed in Table 1). This is done to demonstrate, compactly,

the complementarity of information across jurisdictions as well as that of their sublayers,

with the most commonly utilised sublayers in the literature (US applicant and examiner

citations) as exemplars for the latter calculations.
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Figure 3: Layer interdependence. The x-axis presents different target layers α,
and the y-axis shows the AUC obtained through 5-fold cross-validation for measuring
layer interdependence. Orange results refer to the baseline AUC, where the algorithm is
only given access to that target layer. Green and blue markers show the increase in the
AUC for the α set when the algorithm is given access to the US-APP or the US-EXM,
respectively. The red points refer to the AUC obtained by giving access to all other layers
in the network. The results displayed are averages and standard deviations over the 5
folds.

The results displayed in Figure 3 show that adding more layers increases predictive

power across all combinations of α and β we considered. This outcome suggests that,

while they differ by the amount of unique complementary information they contain,

each layer nonetheless contains information that is not available in the other layers.

Specifically, information about the missing values in α is more accurately predicted when

layers that are not already in α are included in the training set, relative to the sole use

of the information that remains in α. This is to be expected, as examiners at each office

conduct much of their prior art search independently.

A prime example of complementarity is displayed by the US sublayers (US-APP and

US-EXM). These layers are almost mutually exclusive,15 but predictive power for links

in one layer is significantly boosted when the other layer is added, regardless of which

is the test set. That is, there is very little overlap in these layers, and yet one can be

successfully used to predict the links in the other, likely due to the similarity of mesoscale

network communities within each of these layers.

That some citation types add more information than others is also expected. After

all, information sharing occurs regularly between offices (Wada, 2020), and this process

leads to the duplication of citations between specific layers. While this sharing happens

15Copying occasionally happens due to the recycling of citations for continuing patent applications.
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increasingly through direct collaboration between offices examining equivalents,16 most

of the citations we consider here were made before these formal programs were launched.

As such, for much of the time period we consider, the information ‘sharing’ likely takes

place indirectly, through applicants. For example, the EPO produces a search report

for the applicant to consider before a substantial examination takes place. Under their

duty of disclosure obligations at the USPTO, it is considered good practice to pass this

information on to the USPTO if an equivalent is being examined there simultaneously

(which will usually be the case for triadic patent families). This information is submitted

via an information disclosure statement and the USPTO examiner then assesses the

relevancy of the prior art that is listed on the search report. When it happens at all, only

a small percentage of citations from the EPO search report will be used to justify rejection

and be recorded as examiner citations, while the remainder will be recorded as applicant

citations. As such, the EPO search report is a non-obvious mechanism through which

citations are duplicated from EP-SEA citations to US-APP citations (and sometimes to

US-EXM citations).

Similarly, while there is a knowledge disclosure obligation at the JPO, the incentives

for complying are very weak relative to the USPTO (Nakamura and Sasaki, 2016). How-

ever, applicants to the JPO often use in-text citations to make a case for patentability,

and perhaps much more so than the typical applicant to the USPTO or EPO. As such,

it is plausible that, for triadic patents, these citations are included in-text in other equiv-

alent applications and are therefore easily accessible to examiners in all jurisdictions.

If these citations are deemed relevant by multiple examiners, these citations might also

appear to be duplicated across network layers.

3.2 Community detection

Having found that the different layers likely contain complementary information, we now

investigate the patterns extracted from a multilayer network approach and compare them

with those extracted from single-layer networks that exclude citation context. Specifically,

we wish to detect communities of triadic families that are similar in their citation patterns.

These communities represent mesoscopic structural patterns contained in the networks

that are not objectively or directly observed, but can be inferred from the data.

To this end, we apply a community detection algorithm to three networks: i) the

(seven-layer) multilayer network containing the EPO, JPO, and USPTO layers (MULTI);

ii) the network obtained by flattening all the layers in (i) into a weighted single-layer

network and ignoring citation origin and context (ALL-AGG); iii) the weighted single-

layer network obtained by flattening the USPTO examiner and applicant layers only

(US-AGG). Each link is weighted by the sum of link weights across all layers we consider;

that is, if the same family-family citation exists once in each of n layers, then the link is

16https://www.wipo.int/case/en/.
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assigned weight n. While rare, link weights greater than one can occur within sublayers;

for example, when a divisional makes the same type of family-family citation as its parent,

the link weight corresponding to this link will be two.

To perform the community detection task, we consider a probabilistic generative

model that assigns a probability to a citation between two families that depends on

the communities they belong to, as described in De Bacco et al. (2017). In our case we

have access to relevant metadata about each triadic family, hence we consider the model

of Contisciani et al. (2020), MTCOV, that is also able to incorporate the office at which

priority was filed (which is often not a triadic office) as a node covariate to drive inference

along with the network structural information. This covariate allows us to incorporate

the home-bias of citations in early search reports (Bacchiocchi and Montobbio, 2010)

and, to a lesser extent, industrial agglomeration patterns (Asheim and Gertler, 2005)

(given the strong correlation between assignee location and priority office), to inform the

inferred citation probability alongside explicit network structure. This model automati-

cally balances the weight of the covariates’ contribution in determining the communities.

In all our experiments we find that node covariates are indeed significant, in that they

allow us to better quantify the probability of certain citation patterns. The optimal num-

ber of communities in each case is extracted through a cross-validation procedure, see

Appendix A for details. In addition to being able to incorporate a covariate that may

inform network structure at scales beyond individual links, MTCOV is scalable to large

networks, allows overlapping communities, and is open-source,17 all of which are desirable

features for the current work.

We chose ALL-AGG as a comparison because it contains all the same links as the

multilayer network, and even accounts for link overlap among layers, but without context.

As such, any differences in the extracted communities arise solely due to the addition of

citation context, and the incorporation of this context into our network model. US-AGG

is included in these comparisons as the most common citation network used in previous

work. The USPTO also tends to make many more citations per patent, and so this

single-jurisdiction layer is likely to be the most ‘complete’, with respect to the links in

the full triadic network.

The communities extracted for MULTI are shown for a random subset of patent

families in Figure 4. Analogous figures for the ALL-AGG and US-AGG networks can be

found in Appendix B. While the model allows for overlapping communities (nodes can

belong to multiple communities), in Figure 4 we colour nodes by their ‘hard’ communities,

whereby each patent family is assigned to the community to which it displays the highest

affinity. The optimal number of communities, calculated via the cross-validation exercise

described in Appendix A.1, was found to be 15 for the multilayer citation network and 7

for ALL-AGG and US-AGG. Finally, the location of the assignee of each patent family

17https://github.com/mcontisc/MTCOV

16

https://github.com/mcontisc/MTCOV


Figure 4: Community extraction. This diagram shows the hard community member-
ship partitions for MULTI. While inference was performed on the whole network, here
we use a random sample of 2000 nodes and include any incidental links among these,
for graphical clarity. The colouring shows the 15 communities found within the MULTI
network. Node size is proportional to the number of outgoing and incoming citations,
while node shapes denote the location of the assignee of each patent family.

(rather than the priority office, which is used as a covariate in the community detection

procedure) is indicated by the shape of the node.

Between networks, several graphical observations can be made in the geographic com-

position of the extracted communities, despite the differing community sizes. First,

country-based homophily is very clear. The most obvious example of this is that families

filed by Japan-based assignees are primarily grouped with families that are also filed by

Japan-based assignees, with the only observable difference between the networks being

how many communities are found within this group of families (1 for ALL-AGG and

US-AGG, and 5 for MULTI); however, this difference is expected as the optimal number

of communities multilayer network is greater. The other consistently geographically-

homogeneous communities include those families assigned to German firms and those

assigned to South Korean firms. The existence of these groupings is somewhat expected
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— geographic citation biases are a well-known phenomenon and have a wide range of

drivers, including local industry agglomeration, shared language, prior-art search strate-

gies, knowledge spillovers, and coordinated technological development strategies at the

national level (Jaffe et al., 1993, Almeida and Kogut, 1999, MacGarvie, 2005, Bacchiocchi

and Montobbio, 2010, Wada, 2016). Because priority office information is included in the

community detection algorithm, the existence of the kind of geographic grouping we ob-

serve reflects that while technological similarity plays a big role in citation linkage at the

micro-level, simple geographical metadata can be highly predictive of network structure

at larger scales.

3.3 Network Communities and Technological Similarity

One would expect that the citations we consider in this work should link families with

technological similarities and, therefore, the communities detected should group inven-

tions with shared and legally relevant technological features. Indeed, the geographical

biases in citation linkages that are observed above may be considered to be artifacts of

the systems within which technological development occurs, and perhaps even hinder

our understanding of the nature of innovation more generally. We assert that the mul-

tilayer framework is one way of mitigating some of these biases, as it integrates relevant

technological relationships uncovered by several different, and geographically separated,

patent agents and examiners working mostly independently. In aggregate, this informa-

tion should give a more balanced view of technological similarity and down-weight those

links that are heavily influenced by unwanted geographical and office-specific biases and

conventions. However, the link weights in the ALL-AGG network may play a similar role.

As such, we will now turn to the differences in the technological information contained

in the three networks and examine the importance of citation context (i.e., source and

justification) in assessments of technological similarity.

To do this, we directly compare the network of meso-level technological relationships

that can be gleaned from extracted communities with externally-defined technological

categories. First, we construct a weighted bipartite (two-mode) network of relationships

between the extracted communities and the 3-digit Cooperative Patent Classification

(CPC) codes that the families within each community were assigned upon application to

the USPTO.18 CPC codes, henceforth referred to simply as classes, were chosen due

to their status as the primary classification system at two of the triadic offices and

widespread use in research, particularly in studies of technological evolution and fore-

casting technical change. The weight of each link in the bipartite network between

communities and classes is proportional to the fraction of families in each community

18This choice was made for the sake of consistency. Different offices may make slightly different
judgements regarding the particular set of classes assigned to an application. By using data from a
single office, we do not have to be concerned with these systematic differences.
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that were assigned to a given class. We then project onto the technology class nodes to

obtain a network of classes wherein links exist between classes that were both found in

the same community or communities. A higher link weight between two nodes in this

projected network reflects a more similar distribution of those classes across the extracted

communities (Vasques Filho and O’Neale, 2018).19

We then construct two basic comparison networks: co-classification (Engelsman and

van Raan, 1994, Breschi et al., 2003) and inter-class citation linkage (Leten et al., 2007,

Alstott et al., 2017). The former contains a link between (3-digit CPC) classes when a

family is assigned to both, with weights proportional to the relative frequency of such

occurrences. The latter network contains links between these classes with weights pro-

portional to the number of citations made between families that were assigned to each

class, normalised to the total made by each of the classes.20 We keep self-loops in this

network, as they are required for sensible link-weight normalisation. For example, if class

A makes 10 citations (and receives none), one of which goes to a class B family but 9

return to other class A families, this is a very different situation from one in which all

10 go to class B families. Because we normalise link weights by total citations made,

ignoring self-citations would give the link from A to B the same weight in both scenarios,

rather differing by a factor of 10. Further description of the construction of all networks

used in this section can be found in Appendix B.

Now that we have two externally defined, node-aligned class networks, we are able to

directly compare their structure to those extracted from the community-class bipartite

networks. Because the nodes in each network we wish to compare are labelled and

the same for all networks, we are able to use known-node correspondence methods that

allow for comparisons at the node-level in such a way that accounts for differences in

relationships between specific node pairs and for higher-order relationships (Tantardini

et al., 2019). For this exercise, we use two different methods of comparison: the Frobenius

norm and DeltaCon (Koutra et al., 2013).

The Frobenius norm is applied to the raw differences in the adjacency matrices be-

tween two networks, and thus quantifies the entry-wise (link-level) differences in the ma-

trices being compared. When the networks being compared are unweighted, this distance

is simply the square root of the number of pair-wise differences between the networks.

However, this method easily accommodates the weighted case, wherein each pair-wise

difference can have a magnitude other than unity.21 The Frobenius norm is a crude com-

19Note that these classes are not directly used in the community detection process. However, the
community detection process relies on citation linkages, and these citations are often found through
searches within the technology classes to which the application under examination has been assigned (see,
e.g., Demey and Golzio, 2020).

20To compare this network to our (undirected) projected networks, we take the sum of the normalised
weights of the directed links between classes to obtain an undirected link weight. This simplification is a
necessary evil for the current purpose and may miss some nuance in certain technological relationships.

21Specifically, the Frobenius norm of a matrix Am×n is defined as the square root of the sum of the
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parison method that cannot account for higher-order relationships between nodes, such as

the importance of a link in the overall structure of the network, but it is a good heuristic

when making multiple comparisons as we do here. DeltaCon, on the other hand, is more

sophisticated, and indirectly considers every possible path between two nodes. In this

way, differences in the weights of links that are particularly important for the network

structure at the macro-level are incorporated into the comparison. While the DeltaCon

algorithm can be very computationally expensive on large networks, and an approxima-

tion is possible, our class network is small enough (535 nodes) that the exact form can be

used (Koutra et al., 2013). Both the Frobenius norm and DeltaCon calculate a distance

metric whereby smaller distances indicate more similar networks. These methods are

implemented in Python using the numpy (Oliphant, 2006) and netrd packages (McCabe

et al., 2021).

In addition to the network comparison methods, we are also able to quantify the di-

versity of technology classes within each community extracted. For this purpose, we make

use of the Rao-Stirling diversity (RSD) (Rao, 1982, Stirling, 2007), which considers both

the homogeneity of each community (with respect to the classes within it) and the level

of ‘surprise’ that specific pairs of classes are found together. For the latter consideration,

we operationalise class distance using the inter-class citation network described above,

as citations are what we use to extract the communities in the first place.22 Calculating

this index for all communities extracted from a particular network, we take the median

index across these communities as a measure of their average diversity. The RSD is high

for a particular community when classes co-occur in high proportions with other classes

with which not many citations are exchanged. RSD is low when classes generally only

co-occur in high proportions with other classes with which they exchange many citations.

Specifics of the RSD can be found in Appendix B.2. This kind of analysis, when compared

to the network comparison methods above, may be considered relatively myopic. It can

only capture the internal composition of individual communities without accounting for

the relationships between the pairs of technologies in other communities. However, this

calculation may provide insight into the origin of differences we find for the network-level

comparisons.

Lastly, we calculate the spread of technologies across the extracted communities. A

priori, we do not know what the relationships between the communities are, so we cannot

integrate a distance metric to account for the level of surprise that a family assigned a

particular class is found in a given pair of communities (as we did for the previous diversity

absolute squares of its elements,

||A||F =

√√√√ m∑
i=1

n∑
j=1

|aij |2 . (1)

22That is, it would be a ‘surprise’ to find a pair of classes that don’t cite each other, but are nonetheless
found in the same community.
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Table 2: Network comparison and diversity measures. Here we show the results of
the network distance calculations as well as the diversity measures. DeltaCon (DC) and
Frobenius (F) distances between the class-projected networks (leftmost block) and the
externally defined co-classification (Co-class) and inter-class citation linkage (IC Cites)
networks are displayed in the central block. The median Rao-Stirling class diversity
(RSD) across communities and the median Herfindahl–Hirschman Index (HHI) of classes’
dispersion across communities are shown in the rightmost block. * indicates non-optimal
partition. The lowest values within each comparison set are highlighted in bold.

Comparison Network Diversity

Co-class IC Cites
RSD HHI

C DC F DC F

MULTI* 7 32.43 115.98 30.40 115.01 6.81 0.185

ALL-AGG 7 34.00 149.40 31.96 148.31 7.02 0.263

US-AGG 7 34.54 150.63 32.49 149.59 7.05 0.271

MULTI 15 30.08 58.66 28.09 58.61 6.87 0.131

ALL-AGG* 15 31.47 78.87 29.49 78.56 6.87 0.169

US-AGG* 15 30.79 76.73 28.81 76.42 6.99 0.167

measure). As such, we implement the Herfindahl–Hirschman Index23 (HHI) (Hirschman,

1945, Simpson, 1949, Herfindahl, 1950, Hirschman, 1964) to measure the extent to which

classes are splintered across communities. The details of this calculation can be also found

in Appendix B.2. The HHI is maximised when all families assigned a particular class are

in the same community and minimised when there are the same number of these families

in each community. Again, the median HHI across all communities is compared across the

networks. Like the Rao-Stirling index above, this calculation may add additional colour

to the more comprehensive network comparisons. It is important to note that while we

believe that it is desirable that communities are able to capture, to some extent, the

large-scale structure of the technology-level networks, neither the spread of technologies

across communities, nor the internal diversity of communities, is a test of the performance

of the community extraction exercise.

It is important to note that the optimal parameters for the community partitions for

the three networks are different—the optimal number of communities found for the mul-

tilayer network is 15, while for the others it is 7. For this reason, we run the community-

detection algorithm for each of the non-optimal partitions (7 for the multilayer network

and 15 for the others) to obtain a complete set of networks with which we can make fair

comparisons. In sum, we construct six bipartite (community-class) networks which we

project onto the class nodes to compare with the co-classification and inter-class citation

networks.

23Sometimes referred to as the Simpson index.
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The results of this analysis can be found in Table 2. First, we find that the com-

munities in the multilayer network generate class networks that are more similar to the

co-classification and inter-class citation networks than those generated by the other two

networks. This finding holds for both individual-link-level comparisons (Frobenius) and

when higher-order relationships are taken into account (DeltaCon), for both optimal and

non-optimal partitions of the multilayer network. Further, we find that the average RSD

of the individual communities is lowest, while classes are the most evenly distributed

across the communities (low HHI), in the multilayer case.

These observations lend themselves to some interesting interpretations. When looking

at all communities, in combination, those extracted from the multilayer network imply

technological relationships that are closer to the explicit technology networks than the

flattened or single-jurisdiction approaches. However, the diversity calculations suggest

that this observation is not simply driven by the extraction of homogeneous communities

that group technologies in a straightforward manner. In fact, technology classes are more

thinly spread across communities in the multilayer case, while the average internal diver-

sity of classes is generally lowest for this network once known technological similarities

between classes are accounted for. This suggests that, on the micro-level, the multilayer

(relative to the single-layer) network approach is more sensitive to citation linkages than

co-classification, but is nonetheless better able to represent real technological relation-

ships on the meso- and macro-levels.

Indeed, our results are consistent with the conclusion that the multifaceted nature

of the technological relationships that are embedded in citation data may be partially

lost when a multilayer network is flattened into a single-layer one. This view rests on an

assumption that different technology types can be related to each other in different ways.

For example, let’s assume that applicants filing a patent assigned to class A prefer to cite

families assigned to class B, while examiners examining the same patent prefer to cite

those assigned to class C. When, such as in this example, these different relationships

are driven by different citing parties, the erasure of citation context will lead to the loss

of this nuance. This problem may be exacerbated in the presence of higher-order effects,

such as if the above citation behaviour only occurs when a fourth class D is also assigned

to the patent application. In contrast, the multilayer network approach ensures these

nuances and higher-order relationships remain accessible. The retention of this kind of

technologically relevant information, particularly with respect to rare or subtle inter-class

relationships, would be consistent with the findings displayed in Table 2.

4 Discussion and Conclusions

Historically, research informed by patent citation data has often ignored citation source

and context. There can be a perfectly reasonable reason for this practice, such as when
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one is only interested in citations made to and from patents in a single jurisdiction to

study, for example, the effect of a local policy change. However, a truly comprehensive

and global view of patented inventions and the relationships between them is only possible

when data from multiple sources are integrated sensibly. It is in these contexts that the

multilayer network is a natural framework for analysis.

In this work, we introduce the concept of multilayer patent citation networks as a

natural way to present and analyse global patent information without loss of citation

context. We conduct several empirical analyses to demonstrate the utility of the mul-

tilayer framework. All analyses are conducted on a subset of the full citation network,

containing all triadic patent families classified into CPC class Y02 with US members

granted from the year 2001. By design, this subset will give the most conservative esti-

mates of the additional information that may be extracted from the multilayer network

relative to its single-layer counterparts. Our results in this work suggest that not only

is there, indeed, a considerable amount of additional information contained in the multi-

layer citation network relative to those single-layer counterparts, but this information is

technologically relevant and captures nuanced aspects of the technological relationships

between patented inventions.

First, an interdependence analysis shows that additional network layers, defined by

citing office, contain complementary (rather than redundant) information that may be

used to predict the link-level structure of other layers. To test whether this complemen-

tary information is important for characterising network structure more generally, we then

conduct an exercise in community detection. This is carried out and compared across

three different networks: the multilayer network, the flattened and weighted (single-layer)

version of the multilayer network (containing all the links in the latter but without cita-

tion context), and the complete (flattened, single-layer) US citation network that is most

commonly used in technological network analyses. While there is a notable similarity in

the communities extracted from these networks, there is also significant disagreement,

indicating that the information contained in the citation context may be important for

characterising the mesoscopic structure of the global citation network.

To test whether the differences in community structure are technologically meaning-

ful, we conduct direct comparisons between the technological relationships implied by the

extracted communities and those of previously studied meso-scale networks of technolog-

ical similarity: the co-classification and inter-class citations networks, at the CPC 3-digit

level. These tests are conducted, in part, to show how the information content (i.e.,

citation context) contained in citation networks can be related to the meso-scale tech-

nological structures that are perhaps more established in the technology management

community. To be able to draw a direct comparison, we construct the bipartite networks

between communities and classes, then project onto the class nodes to obtain a class

network wherein links reflect levels of co-occurrence in the communities. To add colour
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to these comparisons, we also compute the Rao-Stirling diversities of these communi-

ties (across classes) and the Herfindahl–Hirschman Indices of class (across communities).

Relative to the flattened networks, we find that while the communities extracted from

the multilayer network are less diverse and the implied class network more similar to the

co-classification and inter-class citation networks, classes are more evenly spread across

communities. These results suggest that citation context is technologically relevant and

a more realistic mesoscopic network structure can be inferred when we depart from the

view that technological relationships are mono-faceted or driven by simple class-level

technological similarity.

While we include the US citation network in our comparison exercises, this is only

done as an acknowledgement of its position as the dominant data source in the extant

literature. The flattened version of the multilayer network, on the other hand, contains

all the links that are present in the multilayer network, but without the context that

allows us to define the layers. As such, we consider this network the most appropriate

comparison network, as any differences found must be driven by the absence of cita-

tion context. That the communities extracted from the multilayer network more closely

replicate the established and explicit co-classification and inter-class citation networks

indicates that citation context adds technologically relevant information in the aggre-

gate, despite displaying higher within-community diversity of classes. This suggests that

ignoring citation context results in a bias towards within-class citations (that are easier

for all parties to search for and find), at the expense of the rarer inter-class citations and

class combinations that play a larger role in both the network structure as a whole and,

arguably, technological progress in the long-term (Castaldi et al., 2015, Verhoeven et al.,

2016, Mewes, 2019, Kelly et al., 2021). Considering citation generation mechanisms, it

is plausible that citation context provides important clues as to the relevance and na-

ture of the technological relationship between citing and cited inventions (Criscuolo and

Verspagen, 2008, Alcácer et al., 2009, Azagra-Caro et al., 2011, Li et al., 2014, Kuhn

et al., 2020). As such, treating all these links as equal, with respect to their information

content, is clearly not ideal for many use-cases.

4.1 Limitations

The main limitations of the empirical analyses conducted in this work are those restric-

tions we placed on the families we chose to include. As we describe in Section 2.3, these

restrictions were put in place for a variety of reasons, including data availability, compu-

tational limitations, and a desire to demonstrate our approach in a conservative manner.

Little can be done about data availability; however, this only affects our ability to exam-

ine citation context in the US case, and only for times earlier than the year 2001. In any

case, we suggest that families granted after this time provide a sufficiently large sample

for the purposes of this work.
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The conservativeness of our approach is introduced with the decision to consider only

those families with granted patents at all three triadic offices. This means that all offices

had access to the same set of prior art, and had the opportunity to share information

among themselves. In turn, this would introduce maximum redundancy between layers,

and minimise the additional information that can be added by the inclusion of citation

context. It is for this reason that we think of our approach as conservative. Extensions

of the restrictive, special-case multilayer framework that we examine here are discussed

below in Section 4.2, and highlight the potential of this framework going forward.

Lastly, to reduce the computational complexity of our analyses, we restrict the in-

cluded families to those classified into CPC class Y02. While we maintain that this

subset is an appropriate representation of the patent citation network as a whole, there

may be arguments against its generalisability. However, in the case that this class con-

tains a more homogeneous set of families than the set of all families (which is almost

certainly true), then the inter-class structure that we are able to explore is likely to be

less rich and less nuanced than that of the full network. Detecting higher-order nuances is

precisely the domain in which we suggest the multilayer network excels, so following this

logic would lead us to conclude that the current approach is, again, a very conservative

one.

4.2 Future Work

This work aims to describe the construction of multilayer patent citation networks then

conceptually and empirically justify their use. This framework may prove to be of par-

ticular interest to those who would prefer representations of technological relationships

that are not as sensitive as extant frameworks to the idiosyncrasies of individual patent

offices. However, both the layers that are selected to comprise the network and the ap-

propriate empirical methods to extract information from this network will depend on the

specific use-case. Here, we describe the myriad methodological doors that are opened

with the introduction of patent-based multilayer networks into the broad field of science,

technological, and innovation studies.

The obvious extension to the current work is to take a less conservative approach

with respect to the subset of families and citations considered. This can take the form of

additional layers, nodes, or links. The addition of layers corresponds to the addition of

new citation contexts (such as in-text citations (Verluise et al., 2020)) or the addition of

new jurisdictions. The addition of nodes and links, on the other hand, would relax the

condition that a family be triadic. Citations between triadic families only make up a tiny

portion of all citations made and received by these families. For example, in Figure 1,

we show the triadic ego network of the family with USPTO equivalent US-6819081-B2.

In this restricted network, this family only receives 4 citations from other triadic families

classified into class Y02. If we remove all restrictions on the patents we include in our
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network, however, this family receives almost 50 citations; about 90% of these are from

families that have a triadic member, and about 95% are from families that are also

classified into Y02. As such, removing the triadic family requirement but keeping the

network restricted to the triadic offices and the Y02 classification would dramatically

increase the sample size.

Multilayer citation networks can also be flexibly aggregated. Just as one can analyse

the inter-class citation network for a single jurisdiction or citation context (e.g., US ap-

plicant citations), it is also possible to include additional layers containing the equivalent

information for other jurisdictions or contexts. In fact, in the same way that we use fam-

ilies to align layers in the current work, any metadata that connects groups of patents

between network layers forms a natural multilayer configuration. Classes, firms, and in-

ventors can all be linked across jurisdictions and citation contexts and their networks

analysed in a multilayer framework. Even in the single-jurisdiction US case, for example,

the relative positions of firms in the inter-firm citation network will depend on whether

one uses examiner citations, applicant citations, third-party citations, or in-text citations.

Because firms can be represented as nodes across all of these context-specific networks,

multilayer network tools may be applied to obtain a comprehensive and integrative view

of the network structure without abandoning citation context. Citations to non-patent

literature such as scientific articles is challenging to incorporate into patent citations

networks generally, but it is certainly possible to treat this information as family-level

metadata — perhaps to construct a bipartite network similarly to how technology classi-

fication was used in Section 3.3. More complicated uses of this information could match

institution and inventor data from patents onto scientific articles to extend recent work

on the multilayered interplay between authorship and the broader dynamics of science

and collaboration into the technological domain (Omodei et al., 2017, Nanumyan et al.,

2020, Zingg et al., 2020).

In addition to these data extensions, the conceptual arguments against the omission

of citation context lead to a strong case for the further application of novel tools designed

for the study of multilayered systems. To return to the public transport analogy, it would

be unwise to treat all modes of transport as equal if you are trying to find the fastest

route between two places in the network. In the same way that the time and financial

costs of using different modes affects the route choice between two points in a physical

landscape (which will be moderated by the amount of time or money you had), citation

networks are embedded in a technological landscape (Kauffman et al., 2000, Fleming and

Sorenson, 2001) and different types of citation may traverse this landscape in different

ways. This intuition has significant consequences for the analysis of citation networks.

For example, any algorithm that ‘walks’ through the network, such as PageRank, should

consider the ‘cost’ of each link in a similar way to one plotting a route through a multilay-

ered transportation network. The application of multilayer network methods opens the
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door to a menagerie of new analytical tools to develop more sophisticated and tailored

metrics for studies of technical change and the nature of innovation systems. For exam-

ple, the identification of patent thickets (Shapiro, 2000, Bessen, 2003) is often conducted

through, or supported by, citation network analysis (Von Graevenitz et al., 2011, Zingg

and Fischer, 2018, Yuan and Li, 2020). The multilayer framework may assist in these

studies — thicket identification depends crucially on the citation context (blocking vs.

non-blocking citations) and the jurisdiction (a thicket is necessarily a single-jurisdiction

phenomenon). Adding citation context and linking families across jurisdictions for di-

rect comparison may allow for thickets to be more easily distinguished from fields with

dense, but non-overlapping, intellectual property rights. For example, when calculating

clustering coefficients in multilayer networks, one can specify weights for different kinds

of citation or penalise cycles that move between layers (De Domenico et al., 2013). This

kind of flexibility can be used to operationalise the definition of thickets in a way that

doesn’t simply ignore applicant-provided citations or citations from other jurisdictions,

which may not be entirely irrelevant, particularly at the firm level.

Network centrality is another important concept that is generalised in the multilayer

case (Solá et al., 2013, Solé-Ribalta et al., 2014, De Domenico et al., 2015, Taylor et al.,

2021), and can also be readily applied to citation networks. For example, without citation

context, it is hard to know whether firms are central because they block the patents of

competitors or are a source of knowledge from which other firms build. Further, firm

centrality will likely depend on the jurisdiction one examines, so multilayer centrality

may give a more holistic view of their centrality in global markets.

Both technology roadmaps (Lee et al., 2009) and technological trajectories (Verspagen,

2007) may be significantly altered by the incorporation of citation context, as different

kinds of citation appear to hold different information, which may, in turn, be useful for

forecasting or tracing different kinds of technical change (Acemoglu et al., 2016, Mariani

et al., 2019). So-called ‘main paths’ in technological trajectory analysis (Hummon and

Dereian, 1989, Verspagen, 2007) could be particularly sensitive to the weights that are

placed on, or empirically determined for, different layers or citation contexts. The mul-

tilayer framework may also conceptually aid traditional economic analyses (Cai and Li,

2019), for which it is possible, for example, to allow layers to differ in importance when

constructing proxy network variables that attempt to capture an abstract concept.

Lastly, pair-wise interactions may not be sufficient to describe the complex behaviour

of interactions between the components of innovation systems that are accessible through

citation networks. In particular, the interactions between firms or technology types that

are visible in citation networks may be better represented through higher-order interac-

tions (Lambiotte et al., 2019, Battiston et al., 2020, 2021). For example, the patenting

and citing behaviour of firms may be described at several different scales. Higher-order

representations allow us to differentiate changes in citation behaviour of a firm in re-
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sponse to sector-wide changes from the pairwise interactions between a firm and every

other firm in its sector. Higher-order interactions can exist within layers of multilayer

networks and it is possible that different higher-order behaviours are observable in dif-

ferent patent systems. In any case, it is clear that applications of network frameworks

beyond single-layer networks with dyadic links are very much in their infancy in the field

of innovation studies, and hold huge potential as more realistic abstractions of innovation

systems.
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I. Iacopini, S. Kéfi, V. Latora, Y. Moreno, et al. The physics of higher-order interactions

in complex systems. Nature Physics, 17(10):1093–1098, 2021.

29



E. Berkes and R. Gaetani. The geography of unconventional innovation. The Economic

Journal, 131(636):1466–1514, 2021.

M. Berlingerio, M. Coscia, F. Giannotti, A. Monreale, and D. Pedreschi. Foundations of

multidimensional network analysis. In 2011 International Conference on Advances in

Social Networks Analysis and Mining, pages 485–489. IEEE, 2011.

J. E. Bessen. Patent thickets: Strategic patenting of complex technologies. Available at

SSRN 327760, 2003.

B. P. Biddinger. Limiting the business method patent: A comparison and proposed

alignment of european, japanese and united states patent law. Fordham L. Rev., 69:

2523, 2000.

S. Boccaletti, G. Bianconi, R. Criado, C. I. Del Genio, J. Gómez-Gardenes, M. Romance,
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Te Pūnaha Matatini, 2021.
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Appendices

A Model description

For the layer interdependence and community detection analysis we use MTCOV,24 the

model developed by Contisciani et al. (2020). MTCOV is a probabilistic generative model

that incorporates both the topology of interactions and node attributes to extract over-

lapping communities in directed and undirected multilayer networks. It works also with

single-layer networks, since this is the special case for which there is only one layer in the

‘multilayer’ network. The model assumes conditional independence between the network

and attribute data, given a set of latent variables (including the node community mem-

berships). The likelihood function is a linear combination of the network and attribute

information, adjusted by a scaling hyperparameter γ ∈ [0, 1], which controls the relative

contribution of the two terms: for γ = 0 the model only considers the network topology,

while for γ = 1 it only considers the attribute information.

MTCOV has four parameters: two membership matrices accounting for outgoing and

incoming links respectively, an affinity tensor that describes the density of links between

each pair of groups among the different layers, and a parameter that matches communi-

ties and node attributes. The inference is performed with an Expectation-Maximization

algorithm, and its implementation is efficient and scales to large datasets (such as the

one studied here) because it exploits the sparsity of the dataset.

A.1 Cross-validation and hyperparameter settings

MTCOV has two hyperparameters, the scaling parameter γ and the number of commu-

nities C. For each network under analysis, we estimate the hyperparameters by using

5-fold cross-validation along with a grid-search to range across their possible values. For

the current work, we choose to vary C ∈ {2, 3, 5, 7, 10, 12, 15} and γ ∈ {0, 0.3, 0.5, 0.7, 1}.
Specifically, we divide the dataset into five equal-size groups (folds), selected uniformly at

random, and give the models access to four groups (training data) to learn the parame-

ters; this contains 80% of the matrix entries and covariates. One then predicts both links

and node attributes in the held-out group (test set). By varying which group we use as

the test set, we get five trials per realization. For performance metrics, we measure the

area under the receiver-operator characteristic curve (AUC) (for the link prediction) and

the accuracy (for the node attribute prediction) on the test data, and the final results are

averages over the five folds. The AUC is the probability that a random true positive is

ranked above a random true negative; thus the AUC is 1 for perfect prediction, and 0.5

for random chance. The accuracy classification score is 1 for perfect recovery and 0 in

the worst case of overfitting. In order to choose the best pair of hyperparameters (Ĉ, γ̂)

24https://github.com/mcontisc/MTCOV
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Table 3: Hyperparameters setting. Values of the hyperparameters C and γ extracted
by 5-fold cross-validation combined with grid-search.

US-EXM US-APP EP-APP EP-ISR EP-SEA JP-REJ JP-BCK US-AGG ALL-AGG MULTI

C 7 7 7 7 3 7 7 7 7 15

γ 0.3 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7

we look for the pair that performs best across both AUC and accuracy in the test set.

Since the networks are large, it is not always possible to compute the AUC on the

whole training and test sets, hence we proceed with samples. In detail, we fix the number

of comparisons we want to evaluate, here 105, and for both the train and the test sets we

sample 105 values from zeros entries (where there is no existing link) and we compute the

link prediction on that sample (we save these values in a vector R0); we do the same with

the non-zeros entries (we save these values in a vector R1). We then make element-wise

comparisons and compute the AUC as:

AUC =

∑
(R1 > R0) + 0.5

∑
(R1 == R0)

|R1|
(2)

where
∑

(R1 > R0) stands for the number of times R1 has a higher value than R0 in the

element-wise comparison; and |R1| = |R0| is the length of the vector which is equal to

the number of comparisons we fix. Moreover, when the network has a number of nodes

bigger than 5000, we run the algorithm by computing the likelihood only on a batch of

nodes (here a random subset with 5000 nodes) to speed up the computational time.

Table 3 shows the optimal hyperparameters obtained for all single-layer and multilayer

networks used in the manuscript.

A.2 Layer interdependence analysis

The layer interdependence problem consists of identifying which sets of layers are struc-

turally related, and quantifying the strengths of those relationships. To this end, we use

the MTCOV model and we employ the method described in De Bacco et al. (2017). This

method consists of performing link prediction in one layer with and without the informa-

tion in another layer to quantify the extent to which these two layers are related. Thus,

for our purposes, interdependence is based on the idea that two layers are interdependent

if the structure of one layer provides meaningful knowledge about the structure of the

other.

To test our ability to predict a set of target layers α, we perform experiments with

5-fold cross-validation following the same routine as above by using only the optimal pair

of hyperparameters. The main difference from the community-detection procedure above

is the way the training and test sets are built. In fact, for the layer interdependence task,

we only split (5-fold) the links in the set of target layers α together with the attributes
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for the nodes in this set, while giving full access to the set of layers β when they are

added.

For this task, because we are mainly interested in link prediction, rather than in

recovering covariates, we measure the AUC as in Equation (2). The final AUC is the

average obtained over the five folds, each of which holds out a different subset of 20% of

α. The value of the AUC depends both on the set of target layers α we are trying to

predict, and on what set of other layers β we give the algorithm access to.

As described in Section 3.1, we restrict our analysis to the sublayers generated by

the USPTO (separately) and the JPO and EPO layers (as sets of sublayers), without

exploring all possible combinations of sublayers. In detail, we consider the following

experiments:

(a) α = [US-APP], β1 = [US-EXM], and β2 = [US-EXM, EPO, JPO].

(b) α = [US-EXM], β1 = [US-APP], and β2 = [US-APP, EPO, JPO].

(c) α = [EPO, JPO], β1 = [US-APP], β2 = [US-EXM], and β3 = [US-APP, US-EXM].

(d) α = [US-APP, EPO, JPO], and β1 = [US-EXM].

(e) α = [US-EXM, EPO, JPO], and β1 = [US-APP].

Note that for the JPO and EPO, we are using all sublayers of these two jurisdictions.

Furthermore, when the set α contains only a sublayer of USPTO [(a), (b)], the hyperpa-

rameters used by the algorithm are C = 7 and γ = 0.7, which is the optimal choice for

the US-AGG network. For [(c), (d), (e)] the algorithm uses C = 15 and γ = 0.7, which

is the optimal choice for the multilayer network, for computational simplicity.25

B Network comparison

B.1 Class network construction

We use network comparison methods in order to quantify the differences in the tech-

nological information contained in the MULTI, ALL-AGG, and US-AGG networks. In

particular, we directly compare a projection of the bipartite network of relationships

between the extracted communities and the 3-digit Cooperative Patent Classification

(CPC) classes with co-classification and inter-class citation networks. Figure 5 displays

the communities extracted for a random subset of the nodes and edges in ALL-AGG and

US-AGG.

To build the bipartite network between communities and classes, we first populate

a matrix P whose dimensions are given by the number of families (22653) times the

25A cross-validation procedure to detect the best pair for the different sets α was determined to be
too computationally expensive.
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Figure 5: Community extraction for comparison networks. This diagram shows
the hard community membership partitions for the ALL-AGG and US-AGG networks.
As for Figure 4, we use a random sample of 2000 nodes and include any incidental links.
The layout is determined by the results for MULTI, for purposes of direct comparison,
while the colouring shows the communities found for each network (7 communities for
each of ALL-AGG and US-AGG). Node size is proportional to the number of outgoing
and incoming citations, while node shapes denote the location of the assignee of each
patent family.

number of classes (535). This is a binary matrix with non-zero entries when a family is

assigned to a given class. We then normalize the matrix such that each column sums

up to one. In this way, we can consider the matrix P to be the membership matrix of

the classes among the patents. By multiplying the transpose of the membership matrix

of the patents among the communities and the previous matrix P , we get the bipartite

network D = UT P of relationships between the extracted communities and the classes.

To ease the comparisons, we need to project this bipartite network onto the technology

classes to obtain a network of classes. The projection onto the class nodes is computed

through the matrix multiplication DT D between the bipartite matrix D and its trans-

pose. This projection has non-zero entries when pairs of classes are both found in the

same communities, with weights proportional to their relative frequencies within those

communities. As baseline comparisons, we use the co-classification and the inter-class

citation networks. The former is obtained by the matrix multiplication P TP , while the

latter is constructed as described in Section 3.3.

After running the community-detection algorithm for both the optimal and non-

optimal partition of each of the three networks MULTI, ALL-AGG, and US-AGG, and

only then can we obtain six projected networks among which we are able to make fair

comparisons. Table 4 shows the performance of MTCOV on the citation networks (with
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Table 4: Results of link prediction and covariate prediction tasks. We measure
AUC (link prediction) and accuracy (covariate prediction) over 5-fold cross-validation for
C equal to 7 (the optimal value for ALL-AGG and US-AGG) and 15 (the optimal value
for the MULTI network); γ = 0.7 (the optimal value for all the networks).

C AUC Accuracy

MULTI
7* 0.835 0.341

15 0.852 0.422

ALL-AGG
7 0.730 0.402

15* 0.739 0.393

US-AGG
7 0.736 0.426

15* 0.749 0.406

non-optimal parameters identified with the symbol ∗) for the link prediction (AUC) and

covariate prediction (accuracy) tasks, using 5-fold cross-validation.

After extracting communities, we construct the six bipartite (community-class) net-

works which we then project onto the class nodes to compare with the co-classification

and inter-class citation networks.

B.2 Diversity measures

Two diversity measures are used in the main body of this work: Rao-Stirling diversity

(RSD) and the Herfindahl–Hirschman Index (HHI). For each network, RSD is calculated

at the extracted-community level and then a median is taken across communities. The

RSD for community c is calculated as (Stirling, 2007):

RSDc =
∑
i,j,i6=j

dij pi,c pj,c , (3)

where dij is a known distance measure between 3-digit CPC technology classes i and j,

while pi and pj are the proportion of families in the community that are assigned classes

i and j, respectively. Two factors complicate this calculation. First, because each family

can be assigned multiple categories, RSD can take on values greater than one. Because

we are directly comparing the RSD for the same set of families (our networks have the

same set of nodes), this is not a concern. In fact, we believe this is sensible for this data.

That is, if a community consists of a set of families that are all assigned the same two

classes i and j, our procedure here will treat these communities as consisting of 100%

i and 100% j (minimal diversity) rather than 50% i and 50% j (maximum diversity),

for a given dij. Second, because we allow overlapping communities (i.e., a node can be

assigned multiple communities with different weights), pi and pj are the weighted sums
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over patent families f in c:

pi,c =

∑
f∈iwf,c∑
∀f wf,c

, (4)

where wf,c ∈ [0, 1] is the weight of family f that is assigned to c.

For our purposes, dij is one minus the normalised link weight in the inter-class citation

network constructed for our network comparison calculations. This metric is scaled such

that distance zero corresponds to the strongest citation linkage for each class, and distance

one corresponds to no citation linkage. These new weights act as proxies for the level of

surprise, where a weight of zero indicates two classes that only ever cite each other, while

a weight of unity indicates two classes that never cite each other. As such, the ‘level

of surprise’ parameter dij down-weights combinations that we expect while exaggerating

those that we don’t. This adjustment is important. For any given technology class, the

number of classes with which it shares community membership depends crucially on both

the classification system and the level of the hierarchy within this system that we choose

to use. When a class starts to get too crowded, for example, it may be split to make

technical search easier (Lafond and Kim, 2019) — after all, this is one of the primary goals

of patent classification systems. For this reason, a distance measure like dij is crucial to

incorporate into technological diversity measurements.

HHI, also called the Simpson diversity index, is calculated at the technology level, i,

to measure the extent to which technology classes are split across extracted communities.

A median across technology classes is then calculated. The HHI for class i is calculated

as:

HHIi =
N

∑
c p

2
i,c − 1

N − 1
, (5)

where pi,c is defined as in Equation (4) and N is the total number of communities into

which families can be assigned (7 or 15, in our case). Equation (5) is the unbiased

version of the HHI (Hall, 2005); this version corrects the 1/N offset that affects the

standard version of the HHI (for which 1/N is the minimum value), which is the sum

in the numerator of Equation (5). The HHI measures how much a technology class is

splintered across communities, ranging from HHI=0 for maximally spread to HHI=1 for

maximally concentrated. We note that the goal of the community detection process was

not to replicate the CPC system as closely as possible. There are many valid reasons

why a technology class may be split across communities, such as when a technology

is particularly generalisable and is applied to (and cited by) many seemingly unrelated

fields. Instead, the HHI gives us an idea of what is, or is not, driving the results we obtain

for the direct network comparison.
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C Ego network details

The diagram in Figure 1 shows the multilayer ego network of a triadic patent family,

labelled A. Table 5 lists the seven families in this diagram, alongside their granted equiv-

alents.

Table 5: Example network subset details. Details of each of the families displayed
in Figure 1 are shown below. Priority indicates the month of first filing. All families
consist of three triadic patents except for C, which includes multiple family members at
the USPTO and EPO.

DOCDB
Family

Equivalent

Node USPTO EPO JPO Priority

A 19192289 6819081 1333511 3671007 2002-01

B 17414436 6174618 0905803 3777748 1997-09

C 26411133 6211645,
6211646

0892450,
1030389,
1030390

4487967 1997-03

D 36242735 7615309 1695401 4527117 2003-12

E 37115311 7687192 1872418 4739405 2005-04

F 38522869 7967506 1994626 5133335 2005-03

G 37115315 7488201 1872421 4663781 2005-04
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