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Abstract

We perform an extensive analysis of how sampling impacts the estimate of sev-
eral relevant network measures. In particular, we focus on how a sampling
strategy optimized to recover a particular spectral centrality measure impacts
other topological quantities. Our goal is on one hand to extend the analysis of
the behavior of TCEC [1], a theoretically-grounded sampling method for eigen-
vector centrality estimation. On the other hand, to demonstrate more broadly
how sampling can impact the estimation of relevant network properties like
centrality measures different than the one aimed at optimizing, community
structure and node attribute distribution. Finally, we adapt the theoretical
framework behind TCEC for the case of PageRank centrality and propose a
sampling algorithm aimed at optimizing its estimation. We show that, while
the theoretical derivation can be suitably adapted to cover this case, the result-
ing algorithm suffers of a high computational complexity that requires further
approximations compared to the eigenvector centrality case.

Introduction

When investigating real-world network datasets we often do not have access to the entire net-
work information. This is the case of large datasets, having limited storage capacity or limited
resources during the data collection phase. Nevertheless, this should not prevent practitioners
from analyzing an available network sample. In fact, evaluating network properties while ac-
cessing only a smaller sample is a relevant problem in various fields, ranging from modeling
dynamical processes [2, 3], network statistics estimation [4], data compression [5] and survey
design [6]. Imagining that one could design the sampling scheme for data collection, then this
should be done wisely, as this biases the estimates of the network properties aimed at investi-
gating [7, 8, 9]. The goal should be to design a sampling protocol that not only preserves the
relevant network properties of the entire topology inside the sample, but that can be imple-
mented efficiently. Most sampling strategies found in the literature [4] are empirically-driven
and lack of theoretical groundings. Recently, TCEC [1], a sampling algorithm to approximate in-
sample eigenvector centrality [10], whose main features are being theoretically grounded and
computationally scalable, has been proposed. TCEC aims at preserving the relative eigenvector
centrality ranking of nodes inside the sample. This is a centrality measure used in many disci-
plines to characterize the importance of nodes. However, this might not be the only property of
interest when studying a network. The question is then how a sampling method, optimized to
retrieve one particular property, performs in estimating other network-related measures. In this
work we address this question by performing an extensive analysis of the behavior of TCEC in
recovering several relevant network properties by means of empirical results on real networks.
In particular, we focus on estimating various centrality measures which have a very different
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characterization from eigenvector centrality and do not come from spectral methods. Then we
investigate how community structure and covariate information are affected by the sampling.
We compare performance with other sampling strategies. Finally, we discuss what are the chal-
lenges preventing a trivial extension of TCEC on PageRank [11] score.

Related work

A large part of the scientific literature aiming at investigating sampling strategies on networks is
based on empirical approaches [12, 13] and focus on recovering standard topological properties
like degree distribution, diameter or clustering coefficient [4, 14, 15, 16, 17, 18, 19]. To the
best of our knowledge, TCEC sampling [1] is one of the first theoretical attempts in estimating
eigenvalue centrality, which goes beyond heuristics or empirical reasoning. A closely related
problem is that of estimating eigenvector centrality without observing any edge but only signals
on nodes [20]. A different but related research direction is to question the stability of centrality
measures under perturbations [21, 22, 23]. In the case of PageRank score, and more recently
for Katz centrality as well [24], the focus of similar lines of research is based on the different
objective of estimating single nodes’ scores or approximating the external information missing
for reliable within-sample estimation [25, 26, 27], rather than estimating the relative ranking
of nodes within a sample as we do here. Finally, focusing on temporal networks, [28] propose
a centrality measure suitable for this case and a method for its estimation using the network
dynamics.

TCEC: sampling for eigenvector centrality estimation

In this section we introduce the formalism and explain the main ideas behind the Theoretical
Criterion for Eigenvector Centrality (TCEC) sampling algorithm [1]. This method uses mathe-
matical formalism from spectral approximation theory to approximate the eigenvector centrali-
ties of nodes in a subsample with their values in the whole graph. Consider a graph G = (V ,E )
where V is the set of nodes and E the set of edges; denote A its adjacency matrix with entries
Ai j ∈ R≥0 the weight of an edge from i to j. Sampling a network can be defined as the problem
of selecting a principal submatrix A

′

m of size m ≤ |V | induced by a subset of nodes I ⊆ V . The
subsampled network is denoted as Gm = (I ,Em), and Em ⊆ E is the set of edges in the sub-
sample. In general, there can be several choices for selecting Gm. They should depend on the
quantities aimed at preserving when sampling. TCEC selects Gm in order to minimize the sin
distance sin(µm, µ̃) between the eigenvector centrality µ̃ ∈ Rm in the subsample and the one on
the same nodes, but calculated from the whole graph µm ∈ Rm; µm is a vector built from the
whole-graph eigenvector centrality µ ∈ RV , when selecting only the m entries corresponding to
nodes in the subsample. Accessing sin(µm, µ̃) without the knowledge of the whole graph is not
possible. However, given that eigenvector centrality is a spectral method, i.e. is based on eval-
uating eigenvectors and eigenvalues, TCEC uses projection methods for spectral approximation
to propose a bound on that distance and relate it to network-related quantities.
This results in an algorithmic implementation of a sampling procedure that aims at minimizing
that bound. Referring to [1] for details, the algorithm briefly works as follows. Starting from an
initial small random sample, it selects nodes in an online fashion: it adds to the current sample
I of size k one node at a time by selecting the best node from the set of non-sampled nodes
j ∈ V \I . The best candidate node j is the one that maximizes the following quantity made of
network-related quantities:

(1−α)
�

||b1||22 + ||b
T
1 U ||22 − ||b3||22

�

+α dGk
in ( j) , (1)

where b1 ∈ Rk−1 are the edges pointing from j to the nodes already in the subsample, b2 ∈ R
is the entry corresponding to j, b3 ∈ Rn−k+1 are edges from nodes outside the sample towards
j, U ∈ Rk−1,n−k+1 are the edges from nodes outside the sample towards nodes in it, j excluded;
dGk

in ( j) is the (weighted) in-degree of node j calculated considering only the incoming edges from
nodes that are in the sample; α ∈ [0,1] is an hyperparameter that can be tuned empirically. We
present a diagram of the quantities involved in Fig. 1.
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Figure 1: TCEC sampling visual representation. Consider a candidate node v to be added to the
current sample Gm. The algorithm considers: the outgoing connections b1 towards the sample,
the incoming connections b3 from the non-sampled nodes and U , the remaining edges incoming
towards the sample.

Empirical studies

We study the impact of sampling a network with TCEC on several relevant network properties
different form eigenvector centrality. Namely, we investigate: i) the distribution of the sam-
pled nodes in terms of non-spectral centrality measures as in-degree, betweenness centrality and
SpringRank [29]; ii) the relationship between community structure and sampled nodes; iii) the
preservation of the distribution of node attributes in the sampled network. For all these tasks, we
compare with uniform random walk sampling (RW), as this is the mainstream choice for many
sampling scenarios, due to its favorable statistical and computational properties [30]; it has also
shown better performance in recovering eigenvector centrality than all other state-of-the-art al-
gorithms analyzed against TCEC [1]. In addition, in the absence of a best sampling protocol
that works for all applications, we further compare with a third algorithm, chosen differently
according to the task at hand.

Implementation details While we refer to [1] for the detailed definitions of the parameters
needed in the algorithmic implementation, we provide a summary of their values used in our
experiments in the Appendix B; we used the open-source implementation of TCEC available
online1.

Non-spectral centrality measures behavior We analyzed the performance of TCEC in esti-
mating non-spectral centrality measures in real world datasets: the Epinions dataset2 [31], a
who-trusts-whom dataset based on the review site Epinions.com; the Slashdot dataset3 [32], a
social network based on the reviews website Slashdot.org community; the Stanford network 4

[32], a network of hyperlinks of the stanford.edu domain. We considered here only directed
networks as this is the relevant case for the centrality measures we are considering.

We compared with RW and uniform sampling on nodes (RN), since this is a commonly used
sampling criterion for generic tasks [4, 33, 34]. We consider three different centrality measures:
i) in-degree centrality, which corresponds to the in-degree of a node; ii) betweenness centrality,
a measure that captures the importance of a node in terms of the number of shortest paths that
need to pass through it in order to traverse the network; iii) SpringRank [29], a physics-inspired
probabilistic method to rank nodes from directed interactions which yields rank distributions
relatively different than that of spectral measures, like eigenvector centrality. Together, these
three provide a diverse set of methods to characterize a node’s importance. Importantly, none
of this is based on spectral methods, which represents the theoretical grounding behind TCEC.
As we show in Fig. 2, both betweenness and in-degree centrality are well approximated by RW

1https://github.com/cdebacco/tcec_sampling
2https://snap.stanford.edu/data/soc-Epinions1.html
3https://snap.stanford.edu/data/soc-Slashdot0811.html
4https://snap.stanford.edu/data/web-Stanford.html
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and TCEC on all datasets. The SpringRank score is the most discriminative between sampling
algorithms. In this case RW succeeds in retrieving significant interactions to well approximate
rankings, while RN performs poorly and TCEC yield Kendall-τ correlation close to 0. SpringRank
aims at inferring hidden hierarchies of nodes from directed pairwise interactions. We argue
that TCEC performs poorly in recovering SpringRank values similar to the ones in the whole
graph because may cut relevant information for this task: being biased towards nodes with
many connections towards the sample but few incoming connections from outside (see Fig.
1), can change fundamentally the structure of directed pairwise interactions (i.e. edges inside
the sample) at the core of SpringRank. Instead, RN cuts discriminative edges by not taking the
topology into account at sampling time, and therefore achieves poor performances in recovering
any edge-based centrality measure.

Figure 2: Approximation of centrality measures with TCEC, RW and uniform sampling for the three dif-
ferent datasets, Epinions (left), Slashdot (center) and Stanford.edu (right). Scatterplots represent average
results over 10 runs on the three datasets, with standard deviation indicated by vertical lines.

Community structure preservation We investigate how the sampling algorithms impact an
underlying network community structure. To this end, we study the distribution of the commu-
nity memberships of sampled nodes in synthetic networks generated with Stochastic Block Model
(SBM) [35] of size N = 10000 nodes divided in 3 communities, where we sample 10% of the
nodes. Sampling protocols can be sensitive to the topological structure of the network (assorta-
tive or homophilic, disassortative or heterophilic) and to the balance of group sizes [34]. These
can all impact how the different groups are represented in the sample and other factors such
as individuals’ perception biases [36]. We thus run tests on both types of structures and using
various levels of balance for the communities. Specifically, we consider i) balanced assortative
networks: two groups of 3000 nodes and one of 4000, within-block probability of connection
pin = 0.05 and between-blocks pout = 0.005; ii) unbalanced assortative networks: groups of
sizes 1000, 3000 and 6000 respectively, same pin and pout as in i); iii) balanced disassortative
networks: same group division as in i) but within-block probability of connection pin = 0.005
and between-blocks pout = 0.05. We compare TCEC with RW, which was shown to be robust in
representing groups in the sample [34] and expansion sampling [37], since it has been explicitly
built to sample community structure. All algorithms start sampling from a node belonging to
the group of smallest size. We observe two qualitatively different trends in the way nodes are
chosen. Random walk yields samples of nodes more homogeneously distributed across commu-
nities, in all network structures. TCEC, instead, tends to select nodes within the block where it
has been initialized. A possible explanation for this behavior is given by the peculiar form of the
TCEC score of Eq. (1). This in fact tends to select nodes with a large ||b1||2 and small ||b3||2,
i.e. many connections towards the sample and few connections from outside the sample. A
likely choice is to then select nodes within the same community, where this combination holds.
Notice that the nodes outside of the main sampled community can be attributed to the random
walk initialization before the main TCEC routine. Finally, expansion sampling remains confined
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in a single block, as it is a deterministic algorithm. This can be computationally prohibitive for
deployment with larger sample sizes. Results are presented in Fig. 3, where we also report the
KL-divergence [38] between the communities distribution in the sample and the whole network
for all sampling algorithms. The KL-divergence is a measure of discrepancy between probability
distributions, which is 0 if they perfectly overlap, and it gets larger as the difference between
them grows. Thus, higher values signal higher discrepancy between the in-sample block distri-
bution and the one calculated on the entire network. This can be observed graphically in Fig. 3
(left) for the assortative homogeneous structure i). Here the higher KL divergence is due to a
more pronounced clustering of sampled nodes in one single block. The nodes selected by RW are
more scattered around different blocks, while TCEC tends to select nodes within a single block
and expansion sampling is completely confined to the initial one. Similar results hold for case
ii), as defined above, and are presented in Appendix D. For the disassortative structure iii), how-
ever, results differ. In this case, TCEC and RW tend to explore the network in a similar manner.
A lower KL-divergence from the ground truth signals the fact that blocks are sampled more uni-
formly. While for RW this phenomenon is explained by the stochasticity of the neighbourhood
exploration, for TCEC it is caused by the way the algorithm works in selecting candidate nodes
with high out-degrees towards the sample but small in-degrees from outside of it, as shown
in Fig. 1. In disassortative networks these likely candidates belong to different communities,
thus the more homogeneous exploration. Expansion sampling is still confined inside the starting
block as in the previous case.

Figure 3: Community structure and sampling. We show an example of sampling two synthetic SBM
networks one (left) assortative and one (right) disassortative. Sampled nodes and edges are colored in
blue for TCEC (left), red for uniform random walk (center) and green for expansion sampling (right). The
KL-divergence averages and standard deviations are computed over 10 different rounds of sampling 10%
of all the nodes.

Node attribute preservation Another relevant question is whether node attributes are af-
fected by the way the network is sampled. This is particularly important in cases where extra
information is known, along with the network’s topological structure. For instance, in relational
classification, network information is exploited to label individuals (e.g. recovering nodes’ at-
tributes); classification performance can significantly change based on the sampling protocol
adopted [33, 39].

In general, when performing statistical tests on sampled networks’ covariates, we work under
the assumption that their distribution is similar to that of the original network. However, this
assumption is not necessarily fulfilled when performing arbitrary sampling. Notice that this is a
related but different problem than the one above of community structure preservation. In that
case, we were explicitly imposing that communities are correlated with network structure. In
case of attributes, we can only assume that, but this may not be valid depending on the real
dataset at hand. We test this behavior by studying the Pokec dataset5 [31]. This is a social

5https://snap.stanford.edu/data/so-Pokec.html
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network representing connections between people in form of online friendships. In addition,
the dataset contains extra covariate information on nodes, i.e. attributes about the individuals.
In our case we focus on one of them, the geo-localization of users in one of the ten regions (the
eight Slovakian regions, Czech Republic and one label for all other foreign countries) where
the social network is based. We compare the distribution of this covariate in the full network
with that on the nodes sampled by random walk, TCEC and node2vec [40], with exploration
parameters p = 2, q = 0.5, i.e. depth-first oriented search. The choice of node2vec is motivated
by its frequent implementation for node embedding tasks. As node embeddings are often used
for regression or classification tasks, along with network covariates, it is thus relevant for our
task here. We run the algorithms starting from seed nodes within different regions, as the choice
of the initial sample of labeled seed nodes can impact the final in-sample attribute distribution
[34]. As before, we measure KL-divergence between the empirical attribute distribution on
the entire network against that found within the sample. A graphical representation of one
example of the results is given in Fig. 4. We notice different behaviors for the various sampling
methods. While all algorithms recover a covariate distribution close the ground truth, slightly
better performances are achieved, in order, from RW, TCEC and node2vec, with average KL values
ranging from 0.01 to 0.04 respectively. However, a peculiar trend can be observed in relation
to the starting region. In fact, the final sample is biased towards over representing the seed
region for node2vec, as opposed to a comparable homogeneity obtained by TCEC and RW. This
is a subtle result, as this over representation is not shown by the KL values. Instead, it can be
measured by the entropy ratio HGm

(s)/HG(s) between the entropy HGm
(s) = −pGm

(s) log pGm
(s)−

(1 − pGm
(s)) log(1 − pGm

(s)) of a binary random variable representing whether a node in the
sample belongs to the seed region s or not, over HG(s), the same quantity but calculated over all
nodes in the graph. In words, this measures the discrepancy of the frequency of the particular
attribute corresponding to the seed region between in-sample nodes and the whole network.
Values close to 1 denote high similarity, greater than 1 means over representation and less than
one under representation of a particular attribute. In all but two starting regions, node2vec has
a significantly high entropy ratio: for various seed regions this is higher than 1.19 whereas the
maximum values obtained by TCEC and RW are both less than 1.12. Quantitatively, this shows
the magnitude of the over representation in the sample induced by node2vec; instead, TCEC and
RW do not yield any significant bias towards the starting region. An example of this behavior is
plotted in Fig. 4, all the other starting regions are given in Appendix C.

Sampling for PageRank estimation

In this section we discuss the challenges preventing an effective extension of the theoretical
framework behind TCEC to PageRank score (PR) [11] , i.e. a method for sampling networks
theoretically grounded on the same ideas, but aiming at better approximating PageRank, rather
than eigenvector centrality. In fact, arguably counterintuitively, there is no trivial generalization
of TCEC for PageRank. Instead, it is necessary to make further assumptions that result in an
algorithmic scheme that is equivalent to TCEC in practice, from our empirical observations.
Here we explain the main challenges and refer to the Appendix for detailed derivations of how to
address them. PageRank considers a different adjacency matrix APR, which is strongly connected
(as the network is complete) and stochastic (the rows are normalized to 1). This is built from the
original A. Both these features, not present for the eigenvector centrality case, are the cause of
the additional complexity of sampling for PageRank. The PR score is defined as the eigenvector
centrality computed on APR. At a first glance, this may lead to a straightforward generalization of
TCEC sampling by simply applying the algorithm to APR. However, this simple scheme hinders in
fact one main challenge, which makes this generalization theoretically non trivial. TCEC yields
the matrix AGm

(the adjacency of the sampled network Gm ), which is a submatrix of the original
A; having a submatrix is a requirement for the validity of the sin distance bound at the core
of TCEC. Instead, in the case of PageRank, the matrix of the sampled network APR,Gm

is not a
submatrix of APR; this is because APR is a stochastic matrix, which requires knowing the degree
of each node in advance to normalize each row. This information is in general not known a
priori. We fixed this problem introducing an approximation (see Appendix) which allows to use
the theoretical criterion of Eq. (1) in this case as well. However, we still face a computational
challenge. Due to the nature of PageRank, which allows jumps to non-neighboring nodes, albeit
with low probability, the networks behind APR and APR,Gm

are both complete. This results in a
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Figure 4: Covariates distribution and sampling. We consider the Pokec social network dataset (≈ 1.3·106

nodes and ≈ 2.9 · 107 edges) with a sample fraction of 10%. The columns with bolded colors represent
the region where we started the sampling from. Numbers inside the legend are average and standard
deviations over 10 runs of K L(pG ||pGm

), where pG is the empirical frequency of the ten regions in the
original graph, similarly for pGm

in the sample. H represents the mean and standard deviation over the
same runs for the HGm

(s)/HG(s) entropy ratio. We plot here an example of the relative frequency of nodes
for the ten regions in which nodes are divided. The distribution on the whole network is the black vertical
line. Vertical lines on top of bars represent standard deviations across 10 runs of sampling. Notice three
different behaviors: RW obtains an in-sample attribute distribution similar to the one on the whole graph.
TCEC has a higher difference in KL, followed by node2vec. On average, the former two are not biased by
the starting region, as it is instead the case for node2vec. This can also be observed quantitatively by a
higher HGm

(s)/HG(s) ratio.

much higher computational cost of the sampling algorithm. Even though we proposed ways to
fix this issue as well (see Appendix) and thus combined these two considerations into an efficient
algorithmic implementation (which we refer to as TCPR) analogous to TCEC, empirical results
for this are poor. In practice, TCEC performs better in recovering the PR scores of nodes in the
sample.

TCEC vs TCPR for PageRank approximation We compare the approximation of the PageR-
ank score as obtained on samples from random walk, TCEC and TCPR, via Kendall-τ correlation
[41] with the true score, which were assumed to be available in these experiments. A higher
correlation signals a better recovery of the relative ranks between nodes. We do so on the Epin-
ions, Internet Topology, Slashdot and Stanford network. The Internet Topology dataset6 [42],
represents the (undirected) Internet Autonomous Systems level topology.
For these experiments we set the TCEC randomization probability to 0.5, to achieve better ap-
proximation scores (see appendix B). Figure 5 shows a noticeable improvement of TCEC in most
of the networks, both as a function of the sampling ratio and compared to RW for in-sample PR
ranking recovery. However, we do not observe such a pattern for TCPR, which performs better
than TCEC only for few datasets and sample ratio combinations. As the theoretical groundings
behind the two are similar, we argue that using the L1-norm in TCPR (see Appendix A), which
is inherently less discriminative of the L2-norm behind TCEC, seems to affect this difference in
performance. Another possible cause is the extra assumption of in-sample nodes’ degrees lin-
early scaling with sample size. Large deviations from this assumption could sensibly impact the
quality of the goodness criterion at hand.

6http://irl.cs.ucla.edu/topology/
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Figure 5: Results on the four datasets for PR score approximation, respectively Epinions (upper left),
Internet Topology (upper right), Slashdot (lower left) and Stanford (lower right). While, as a general
trend, TCEC and TCPR seem to perform in average better than random walk for PR score estimation, there
is no clear separation between the former two. Standard deviations are computed on 10 runs of sampling.

Conclusions

Designing a sampling protocol when the whole-network information is not accessible is a task
that has to be performed wisely. In fact, the choice of the sampling algorithm biases the analysis
of relevant network quantities performed on the sample. We investigated here the impact on
various centrality measures, community structure and node attribute distribution that sampling
techniques have. We studied in particular the performance of TCEC, a theoretically grounded
sampling method aimed at recovering eigenvector centrality on such network properties within
the sample and compared with other sampling approaches. The goal was to understand whether
a sampling algorithm optimized to preserve a specific global and spectral network measure, is
indirectly preserving also other network quantities. We empirically found that on various real
networks TCEC performs relatively differently than other sampling algorithms on the various
tasks. In particular, while it performs better than uniform random walk in recovering PageRank
values, i.e. a spectral measure, it yields uncorrelated rankings in terms of SpringRank, a non-
spectral centrality measure which behaves qualitatively very differently than eigenvector central-
ity, signaling that TCEC sampling might break the topological structure needed for SpringRank
recovery. In addition, while RW yields community structure homogeneously distributed across
blocks, TCEC tends to select nodes inside the starting community, however partially reaching out
to other blocks. Finally, studying a large online social network, it recovers in-sample attribute
distributions close to the ones of the whole graph. It does not show any significant bias towards
the seed region, as it is instead the case for node2vec, which is over representing the starting
regions. We discussed possibilities of extending TCEC to the case of PageRank and showed the
challenges associated to this task and the remedies to them. However, the resulting algorithm
performs comparably well to TCEC on recovering PageRank values. We focused here in show-
casing the impact of sampling on three different relevant tasks that have broad relevance in net-
work datasets. It would be interesting to extend a similar type of investigation to more specific
network-related measures in concrete applications. For instance, understanding the mechanism
why TCEC gives SpringRank values almost uncorrelated to those on the original network would
provide useful insights on how to break or preserve relevant structural network properties.
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Appendix A. TCPR: extending the model to PageRank score

Before introducing the theory behind TCPR, we begin with a review of the basic PageRank algo-
rithm, introduce some notation and outline the main challenges and assumptions needed in the
following derivations.

Notation Consider a nonnegative adjacency matrix A∈ RV,V . Then we build a new adjacency
matrix APR, called PageRank adjacency matrix, defined as follows

APR := γP +
(1− γ)

V
eeT , (2)

where e is the vector of ones of length V , γ ∈ [0, 1) and P is defined as

P =Q+
edT

V
(3)

d = eT − eTQ (4)

Q = A · diag
�

1
d1

, . . . ,
1
dV

�

, (5)

with d j =
∑

i Ai j out-degree of node j and with the convention that for node with zero
out-degree, named dangling nodes, we take 1/d j = 0.
For all the matrices P,Q, APR we can define two different quantities. Given a subset of nodes
{1, . . . , m} of V we have the principal submatrices Pm,Qm, APR,m relative to these nodes. But we
can also compute the PageRank scores on the subgraph Gm. The matrices relative to Gm are
instead noted as PGm

,QGm
, APR,Gm

. Notice that for the original case of eigenvector centrality we
had the correspondence Am = AGm

, we will simply refer to this as Am.

Challenges In general, as we sample, we only know dGm
in (i) but may not have access to dG

in(i) (
in general dGm

in (i) ≤ dG
in(i)); this implies that the entries of APR,Gm

are different than the subma-
trix APR,m of APR induced by the nodes in Gm. We tackle this challenge by making an additional
assumption: we assume that the degree dGm

in (i) ≈
m
V din(i), i.e. degrees of nodes in the sample

scale linearly with the sample size m; this is a necessary approximation for linking the two other-
wise different matrices APR,m and APR,Gm

(which where instead equal for eigenvector centrality),
its validity has been justified [18] and thus we can use the theoretical criterion of Eq. (1) in
this case as well. This fixes a theoretical challenge, however, we now face a computational one.
Due to the nature of PageRank, which allows jumps to non-neighboring nodes, albeit with low
probability, the networks behind APR and APR,Gm

are both complete. This results in a much higher
computational cost of the sampling algorithm. We reduce this by selecting candidate nodes to be
added to the sample, in analogy with TCEC, among the incoming neighbors only, thus neglecting
nodes that correspond to a non-zero entry of APR but do not correspond to an actual edge. This
has also the advantage of excluding dangling nodes (i.e. nodes with out-degree zero) from the
sample. Combining these two considerations, we obtain a sampling criterion similar to the one
employed in TCEC; we name this TCPR (Theoretical Criterion PageRank).
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Adapting the theory to PageRank While for "vanilla" eigenvector centrality the matrix A was
by hypothesis sparse, and therefore border exploration feasible, now the network represented
by APR is complete. Border exploration, even if randomized by a level p, would be of cost O(V ).
For TCEC the choice was to choose all incoming neighbours in the sample. Here we can do
the same, but only choosing incoming neighbours from the original network A. This because an
incoming connection in A has weight σ(1/dout) in APR, while one due to the artificial edges in
(3) and (2) have total weight σ( k+1

V ), which is negligible for sample size k << V .
This is also in line with the observation that in many sampling scenarios we are not really able
to pick nodes in the graph at random, but just explore neighbourhoods [30]. Additionally, by
only considering incoming neighbours, which have out-degree necessarily greater than 0, we
exclude all the dangling nodes form the final sample.

Notice that the theorem in [1] was comparing the principal eigenvectors of a matrix A and a
principal submatrix Am. In the case of PageRank, this is not applicable. In fact the matrix Q
from eq (5) is normalized differently. In A, the rescaling is done on the full graph, while in Am
on the subgraph degrees. This means that Qm 6=QGm

, and consequently Pm 6= PGm
, APR 6= APR,m.

This problem can be overcome by making a further assumption. In a pseudo-random choice
of any subsample of size m, it reasonable to assume that nodes’ degrees scale linearly, i.e.
N j,Gm

≈ m
V N j . By holding this approximation as valid, and recalling that there are no dangling

nodes in the subgraph, it is straightforward to check that APR,Gm
= V

m APR,m. In particular, the
eigenvector centrality for sampled nodes is the same in the complete graph G and the sampled
one Gm, since APR,Gm

, APRm have the same eigenvectors. This overcomes the first issue of linking
the PR score on Gm and G, and we can simply sample nodes with the goodness criterion from
[1] on the page rank matrix APR.

We are left with the necessity of computing the goodness criterion efficiently.

Efficient criterion computation Suppose, without loss of generality, that the sampled nodes
are {1, . . . , k} and the new node under evaluation k + 1. Considering the PR adjacency matrix
APR the quantities involved in the theoretical criterion (1) are:

b1 = αP:,k+1 +
1−α

V
e (6)

b3 = αPk+1,: +
1−α

V
e (7)

U = αP1:k,k+1:n +
1−α

V
1 , (8)

where e,1 are respectively a vector and matrix of all ones, of correct dimensions. Moreover, we
need bT

1 U . By explicit calculations:

bT
1 U = α2PT

:,k+1P1:k,k+1:n +
α(1−α)

V
P:,k+11

+
α(1−α)

V
eT P1:k,k+1:n +

�

1−α
V

�2

eT
1 . (9)

Implementing the computation of bT
1 U in sparse arithmetics is not convenient, as it would any-

way cost O(k). Performing this increasingly costly operation for all (or some) of the nodes in the
border at every new node sampled is not feasible. Here we optimise this computation explicitly.
First, notice from equation (9) that many terms are independent on the sample. Therefore we
compute the L1-norm ([43]) for all the vectors (6), (7), (9). In all the following computations
we use the symbol =̃ to indicate equality up to an additive constant independent on the sampled
node k. ai j stands for the element i, j of A.

• term b1:

||b1||1=̃α||P:,k+1||1 =
α

Nk

∑

j∈Gk

a jk
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• term b3:

||b3||1=̃α||Pk+1,:||= α







∑

i /∈Gk∪{k+1}
i not dangling

aki

Ni
+

∑

i /∈Gk∪{k+1}
i dangling

1
n






=̃α

∑

i /∈Gk∪{k+1}
i not dangling

aki

Ni

where the last equality is justified by the fact that, since k + 1 cannot be dangling,
{i /∈ Gk ∪ {k+ 1} : i dangling}= {i /∈ Gk : i dangling}, which is independent on k+ 1.

• term bT
1 U . For this we need to split the computation in three, since from equation (9):

||bT
1 U ||=̃α2||PT

:,k+1P1:k,k+1:n||1 +
α(1−α)

n
||P:,k+11||1 +

α(1−α)
n

||eT P1:k,k+1:n||1

For every node j ∈ Gm define δ j :=
∑

i /∈Gk∪{k+1} Pi j (which also depends on the sub-
sample Gk and the new proposal node k+1, we omit the dependence in the notation).
Then:

||PT
:,k+1P1:k,k+1:n||1 =

1
Nk

∑

j∈Gk

a jk

∑

i /∈Gk∪{k+1}

Pi j =
1
Nk

∑

j∈Gk

a jkδ j (10)

||P:,k+11||1 =
∑

ß/∈Gk∪{k+1}

∑

j∈Gk

Pji

=
∑

i /∈Gk∪{k+1}
i not dangling

∑

j∈Gk

a ji

Ni
+

∑

i /∈Gk∪{k+1}
i not dangling

∑

j∈Gk

1
n

=̃
∑

i /∈Gk∪{k+1}
i not dangling

∑

j∈Gk

a ji

Ni

=̃







∑

i /∈Gk
i not dangling

∑

j∈Gk

a ji

Ni






−

 

∑

j∈Gk

a jk

Nk

!

=̃−
a jk

Nk

∑

j∈Gk

||eT P1:k,k+1:n||1 = (n− k− 1)
∑

j∈Gk

Pjk =
n− k− 1

Nk

∑

j∈Gk

a jk

Now, why is expression (10) more efficient? Because we keep an updated calculation
of the terms δ j in memory. After the first random walk initialization we compute δ j for
every j in the sample. Then, whenever a node is added to the sample, they are updated.
Namely, say that a node s is added to Gm. Then for all the outgoing neighbours j of s
already in Gm, we perform the update δ j ← δ j − Pjs = δ j −

a js

N j
.

Summing up we get

||bT
1 U ||1 =

1
Nk

 

α2
∑

j∈Gk

a jkδ j +
α(1−α)(n− k− 2)

n

∑

j∈Gk

a jk

!

=
α

Nk

∑

j∈Gk

a jk

�

(1−α)(n− k− 2)
n

+αδ j

�

Notice that all the quantities here are expressed as a sum over all the nodes in Gm. However, the
summands depend on the edges of the new nodes to be added, and can therefore be performed
in O(din) or O(dout). As opposed to O(k), this is constant with respect to the sample size.
As a final remark, we would like to highlight the fact that it is much harder to find such a
computational trick for the L2 norm of the criterion vectors. This was instead possible for TCEC,
where they had a simpler expression that allowed derivations.
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Appendix B. Details of the empirical implementation

We set the leaderboard size to 100 for both TCEC and TCPR, and theα parameter for TCEC to 0 for
undirected networks, 0.5 for directed ones. The explorations are initialized with a random walk
sampling of 1/5 of the desired final sample size. The randomization level for neighbourhood
exploration in set to p = 0.1, meaning that 1/10 of the possible nodes are explored, unless
specified otherwise.

Appendix C. Extra plots for results on Pokec dataset

We include in Fig. 6 the plots of the results on the Pokec dataset, similar to Fig. 4, but where
the seed point is chosen in each of the remaining regions. The bars relative to the initial region
are bolded.

Figure 6: Results of sampling on the Pokec dataset starting from nodes with different regions as attributes.
The distribution on the whole network is the black vertical line. Vertical lines on top of bars represent
standard deviations across 10 runs of sampling. Numbers inside the legend are KL-divergence and entropy
ratios between attribute distribution on the entire network and that inside the sample, as defined in the
main text.
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Appendix D. Additional results on SBM for community sampling

We include in Fig. 7 the results for sampling on an assortative SBM structure with three
unbalanced groups of sizes 1000, 3000 and 6000 nodes, within-block connection probability
pin = 0.05 and between-blocks connection probability pout = 0.005

Figure 7: Results of sampling on assortative SBM with different block sizes. Sampled nodes and edges are
colored in blue for TCEC (left), red for uniform random walk (center) and green for expansion sampling
(right). The KL-divergence averages and standard deviations are computed over 10 different rounds of
sampling 10% of all the nodes.
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